943 resultados para Electron microscope


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major applications of organoclays are in adsorption of organic polluents. The objective of this work was the synthesis and characterization of organoclays using differents amounts of cationic surfactant hexadecyltrimethylammonium bromide. The clays were characterized by low angle x-ray diffraction (XRD), scanning electron microscope (SEM), infrared with Fourier tranformation (FTIR), BET surface area, elemental analysis (CHN), Foster swell and adsorption of methylene blue. The surfactant can adsorb in differents forms in the interlamelar region changed the basal spacing. The presence of the surfactant adsorbed can be favorable or not in adsorption of the methylene blue due the different interactions dye-organoclays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ceramics are widely used in industrial applications due to their advantageous thermal and mechanical stability. Corrosion of ceramics is a great problem resulting in significant costs. Coating is one method of reducing adversities of corrosion. There are several different thin film deposition processes available such as sol-gel, Physical and Chemical Vapour Deposition (PVD and CVD). One of the CVD processes, called Atomic Layer Deposition (ALD) stands out for its excellent controllability, accuracy and wide process capability. The most commonly mentioned disadvantage of this method is its slowness which is partly compensated by its capability of processing large areas at once. Several factors affect the ALD process. Such factors include temperature, the grade of precursors, pulse-purge times and flux of precursors as well as the substrate used. Wrongly chosen process factors may cause loss of self-limiting growth and thus, non-uniformities in the deposited film. Porous substrates require longer pulse times than flat surfaces. The goal of this thesis was to examine the effects of ALD films on surface properties of a porous ceramic material. The analyses applied were for permeability, bubble point pressure and isoelectric point. In addition, effects of the films on corrosion resistance of the substrate in aqueous environment were investigated. After being exposured to different corrosive media the ceramics and liquid samples collected were analysed both mechanically and chemically. Visual and contentual differences between the exposed and coated ceramics versus the untreated and uncoated ones were analysed by scanning electron microscope. Two ALD film materials, dialuminium trioxide and titanium dioxide were deposited on the ceramic substrate using different pulse times. The results of both film materials indicated that surface properties of the ceramic material can be modified to some extent by the ALD method. The effect of the titanium oxide film on the corrosion resistance of the ceramic samples was observed to be fairly small regardless of the pulse time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mal de Río Cuarto disease is caused by Mal de Río Cuarto virus (MRCV) transmitted by Delphacodes kuscheli. Comparative studies were carried out on the cytopathological alterations produced by MRCV in corn (Zea mays), wheat (Triticum aestivum) and barley (Hordeum vulgare), as seen with a transmission electron microscope. Corn plants were infected with viruliferous D. kuscheli collected from the endemic disease area (i.e. Río Cuarto County, Córdoba, Argentina). For the viral transmission to small grain cereal plants, laboratory rared insects were used. In this case, the inoculum source was wheat and barley plants infected with MRCV isolate grown in a greenhouse. Leaf samples with conspicuous symptoms were collected: enations and size reduction in corn; crenatures, swelling veins and dark green color in small grain cereals. Viral infection was corroborated by DAS-ELISA. Viroplasms containing complete and incomplete virus particles and fibrillar material were found in the cytoplasm of infected cells in all species. Mature virions were between 60 and 70 nm diameter. In wheat and barley, viroplasms and dispersed particles were observed only in phloem, while in corn virions were also found in cells of the bundle sheath. Crystalline arrays of particles were detected in corn enation constitutive cells. Tubular inclusions were found only in wheat samples. The three species showed abnormalities in the chloroplasts of affected cells. The results showed that MRCV cytopathology has similarities with other viruses from the genus Fijivirus, family family Reoviridae, but slight differences depending upon the host plant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A citrus tatter leaf isolate (CTLV-Cl) of Apple stem grooving virus (ASGV) has been found to be associated with a fruit rind intumescence in Cleopatra mandarin (Citrus reshni) in Limeira (SP). The CTLV-Cl was mechanically transmitted to the main experimental herbaceous hosts of CTLV. Chenopodium quinoa and C. amaranticolor reacted with local lesions and systemic symptoms while other test plants reacted somewhat differently than what is reported for CTLV. A pair of primers designed for specific detection of ASGV and CTLV amplified the expected 801 bp fragment from the CTLV-Cl-infected plants. Typical capillovirus-like particles were observed by the electron microscope in experimentally infected C. quinoa and C. amaranticolor leaves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the regions of Campinas and Sumaré, São Paulo, Brazil, hidroponically grown crops of Lettuce (Lactuca sativa) cv. Verônica, which showed virus-like symptoms were examined by electron microscope, biological, serological and molecular tests. Pleomorphic, enveloped particles (80-100 nm in diameter) were always detected in these samples. Experimentally inoculated host plants, including lettuce, reacted with tospoviruses-induced symptoms. Some differences were observed in Gomphrena globosa, which reacted by showing local lesions and systemic mosaic. Two isolates of Tomato chlorotic spot virus (TCSV) were identified by DAS-ELISA and by RT-PCR. The sequencing and alignment of the RT-PCR coat protein amplified fragments have indicated a high degree of homology with the TCSV sequences stored in the GenBank. This is the first report of losses due to a virus from the genus Tospovirus in commercial hydroponic lettuce crops in Brazil. Further epidemiological studies are needed for better understanding the spread of the virus in hydroponic crops, since Tomato spotted wilt virus (TSWV) is reported to spread through the nutritive solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During surveys undertaken from 1998 to 2003 in the major vegetable growing areas of the city of São Paulo green belt, lettuce (Lactuca sativa) and endive (Cichorium endivia) plants were observed, which showed chlorotic thickening of foliar veins, defective growth and, in some cases, failure to form complete heads. Biological and serological [DAS-Enzyme linked immunosorbent assay (Elisa)] tests together with electron microscope observations, revealed the presence of Lettuce big-vein virus and Mirafiori lettuce virus, in these plants both responsible for the lettuce big-vein syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymeric materials have been used in dental applications for decades. Adhesion of polymeric materials to each other and to the tooth substrate is essential to their successful use. The aim of this series of studies was two-folded. First, to improve adhesion of poly(paraphenylene) based rigid rod polymer (RRP) to other dental polymers, and secondly, to evaluate the usability of a new dentin primer system based on RRP fillers. Poly(paraphenylene) based RRP would be a tempting material for dental applications because of its good mechanical properties. To be used in dental applications, reliable adhesion between RRP and other dental polymers is required. In this series of studies, the adhesion of RRP to denture base polymer and the mechanical properties of RRP-denture base polymer-material combination were evaluated. Also adhesion of BisGMA-TEGDMA-resin to RRP was determined. Different surface treatments were tested to improve the adhesion of BisGMA-TEGDMA-resin to RRP. Results were based on three-point bending testing, Vickers surface hardness test and scanning electron microscope analysis (SEM), which showed that no reliable adhesion between RRP and denture base polymer was formed. Addition of RRP filler to denture base polymer increased surface hardness and flexural modulus but flexural strength decreased. Results from the shear bond strength test and SEM revealed that adhesion between resin and RRP was possible to improve by surface treatment with dichloromethane (DCM) based primer and a new kind of adhesive surface can be designed. The current dentin bonding agents have good immediate bond strength, but in long term the bond strength may decrease due to the detrimental effect of water and perhaps by matrix metalloproteinases. This leads to problems in longevity of restorations. Current bonding agents use organic monomers. In this series of studies, RRP filled dentin primer was tested in order to decrease the water sorption of the monomer system of the primers. The properties of new dentin primer system were evaluated in vitro by comparing it to commercial etch and rinse adhesive system. The results from the contact angle measurements and SEM showed that experimental primer with RRP reinforcement provided similar resin infiltration to dentin collagen and formed the resin-dentin interface as the control primer. Microtensile bond strength test and SEM revealed that in short term water storing, RRP increased bond strength and primer with BMEP-monomer (bis[2-(methacryloyloxy)-ethyl]phosphate) and high solvent concentration provided comparable bonding properties to the commercial control primers. In long term water storing, the high solvent-monomer concentration of the experimental primers decreased bond strength. However, in low solvent-monomer concentration groups, the long-term water storing did not decrease the bond strength despite the existence of hydrophilic monomers which were used in the system. These studies demonstrated that new dentin primer system reached the mechanical properties of current traditional etch and rinse adhesive system in short time water storing. Improved properties can be achieved by further modifications of the monomer system. Studies of the adhesion of RRP to other polymers suggest that adhesion between RRP and other dental polymers is possible to obtain by certain surface treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dentistry, yttrium partially stabilized zirconia (ZrO2) has become one of the most attractive ceramic materials for prosthetic applications. The aim of this series of studies was to evaluate whether certain treatments used in the manufacturing process, such as sintering time, color shading or heat treatment of zirconia affect the material properties. Another aim was to evaluate the load-bearing capacity and marginal fit of manually copy-milled custom-made versus prefabricated commercially available zirconia implant abutments. Mechanical properties such as flexural strength and surface microhardness were determined for green-stage milled and sintered yttrium partially stabilized zirconia after different sintering time, coloring process and heat treatments. Scanning electron microscope (SEM) was used for analyzing the possible changes in surface structure of zirconia material after reduced sintering time, coloring and heat treatments. Possible phase change from the tetragonal to the monoclinic phase was evaluated by X-ray diffraction analysis (XRD). The load-bearing capacity of different implant abutments was measured and the fit between abutment and implant replica was examined with SEM. The results of these studies showed that the shorter sintering time or the thermocycling did not affect the strength or surface microhardness of zirconia. Coloring of zirconia decreased strength compared to un-colored control zirconia, and some of the colored zirconia specimens also showed a decrease in surface microhardness. Coloring also affected the dimensions of zirconia. Significantly decreased shrinkage was found for colored zirconia specimens during sintering. Heat treatment of zirconia did not seem to affect materials’ mechanical properties but when a thin coating of wash and glaze porcelain was fired on the tensile side of the disc the flexural strength decreased significantly. Furthermore, it was found that thermocycling increased the monoclinic phase on the surface of the zirconia. Color shading or heat treatment did not seem to affect phase transformation but small monoclinic peaks were detected on the surface of the heat treated specimens with a thin coating of wash and glaze porcelain on the opposite side. Custom-made zirconia abutments showed comparable load-bearing capacity to the prefabricated commercially available zirconia abutments. However, the fit of the custom-made abutments was less satisfactory than that of the commercially available abutments. These studies suggest that zirconia is a durable material and other treatments than color shading used in the manufacturing process of zirconia bulk material does not affect the material’s strength. The decrease in strength and dimensional changes after color shading needs to be taken into account when fabricating zirconia substructures for fixed dental prostheses. Manually copy-milled custom-made abutments have acceptable load-bearing capacity but the marginal accuracy has to be evaluated carefully.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are several filtration applications in the pulp and paper industry where the capacity and cost-effectiveness of processes are of importance. Ultrafiltration is used to clean process water. Ultrafiltration is a membrane process that separates a certain component or compound from a liquid stream. The pressure difference across the membrane sieves macromolecules smaller than 0.001-0.02 μm through the membrane. When optimizing the filtration process capacity, online information about the conditions of the membrane is needed. Fouling and compaction of the membrane both affect the capacity of the filtration process. In fouling a “cake” layer starts to build on the surface of the membrane. This layer blocks the molecules from sieving through the membrane thereby decreasing the yield of the process. In compaction of the membrane the structure is flattened out because of the high pressure applied. The higher pressure increases the capacity but may damage the structure of the membrane permanently. Information about the compaction is needed to effectively operate the filters. The objective of this study was to develop an accurate system for online monitoring of the condition of the membrane using ultrasound reflectometry. Measurements of ultrafiltration membrane compaction were made successfully utilizing ultrasound. The results were confirmed by permeate flux decline, measurements of compaction with a micrometer, mechanical compaction using a hydraulic piston and a scanning electron microscope (SEM). The scientific contribution of this thesis is to introduce a secondary ultrasound transducer to determine the speed of sound in the fluid used. The speed of sound is highly dependent on the temperature and pressure used in the filters. When the exact speed of sound is obtained by the reference transducer, the effect of temperature and pressure is eliminated. This speed is then used to calculate the distances with a higher accuracy. As the accuracy or the resolution of the ultrasound measurement is increased, the method can be applied to a higher amount of applications especially for processes where fouling layers are thinner because of smaller macromolecules. With the help of the transducer, membrane compaction of 13 μm was measured in the pressure of 5 bars. The results were verified with the permeate flux decline, which indicated that compaction had taken place. The measurements of compaction with a micrometer showed compaction of 23–26 μm. The results are in the same range and confirm the compaction. Mechanical compaction measurements were made using a hydraulic piston, and the result was the same 13 μm as obtained by applying the ultrasound time domain reflectometry (UTDR). A scanning electron microscope (SEM) was used to study the structure of the samples before and after the compaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrangea plants showing leaves with chlorotic and necrotic rings from Arujá Municipality, São Paulo State, were analyzed for the identification of the viral species. Elongated filamentous particles of 490 nm were visualized under transmission electron microscope. Oligonucleotides for Hydrangea ringspot virus (HdRSV), a potexvirus commonly found in Europe and in the United States, were tested using total RNA from hydrangea plants, amplifying two fragments, one around 550 and another one of 250 nucleotides. Nucleotide identity with HdRSV (accession number AJ 707100.1) was 96% and 88% for the longest and shortest fragment, respectively, indicating the presence of this virus. To evaluate its dissemination in the matrices of hydrangea used in the commercial production, 17 samples were collected in the region of Arujá, and eight were infected by HdRSV. For the analyzed viral replicase portion, the isolates from the varieties 'Azul LZR', 'Rosita', 'Renat Blue' and 'Vermelho Comum' did not differ in their amino acid sequences from isolates with sequences deposited in the GenBank (accession numbers AY 707100 and NC_006943). The isolates from 'Azul Rendado' and "Rosa Japonesa' showed few differences but were related to the remaining isolates. An antiserum was obtained for HdRSV and can be efficiently used to detect such virus in hydrangea and Primula malacoides, another ornamental plant also infected by HdRSV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityössä on haettu tietoa lasikuitupinnoitteiden ja vinyyliesterihartsien yhteensopivuudesta ja sen testaamisesta. Lujitemuovikomposiitissa hartsi sitoo materiaalit yhteen ja antaa rakenteelle kemiallisen kestävyyden, sitkeyden ja välittää kuormitukset kuitujen kannettaviksi. Vaadittavan lujuuden rakenteelle antaa lasikuitu. Se päällystetään valmistusvaiheessa pinnoiteaineella, sizingilla. Sillä on ratkaiseva merkitys hartsin ja lasikuidun väliin syntyvän rajapinnan muodostumisessa kovettumisprosessin aikana. Käytännössä rajapinnan toimivuutta ja materiaalien yhteensopivuutta tutkitaan makromekaanisilla lujuustesteillä. Menetelmät perustuvat rajapinnan leikkaus¬lujuuden määrittämiseen, mutta myös murtumamekanismeihin perustuvia testi¬menetelmiä käytetään. Mikrotason menetelmät, jotka perustuvat yksittäisen kuidun ja käytetyn hartsin välisen adheesion mittaamiseen ovat yleistyneet, mutta niistä saatujen tulosten ei ole vielä todettu riittävästi korreloivan makro¬mekaanisten lujuustestien kanssa. Työssä tutkittiin kahta eri makromekaanista testimenetelmää. Testeissä havaittiin eroja valittujen lasikuitupinnoitteiden ja vinyyliesterihartsien välillä. Hauras hartsi oli herkempi lasikuitupinnoitteen kemialle. Kun yhteensopivuus vinyyli-esterihartsin ja lasikuitupinnoitteen välillä oli huono, saatiin sekä poikittaisessa vetolujuustestissä että Mode I murtumissitkeystestissä heikko tulos. Pyyhkäisy¬elektronimikroskoopilla suoritettu mikrotason analyysi murtopinnasta vahvisti saatuja tuloksia ja se osoittautui toimivaksi menetelmäksi kuvantamaan ilmiöitä, jotka vaikuttavat yhteensopivuuteen vinyyliesterihartsin ja pinnoitetun lasikuidun välillä.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työssä tutkittiin polymeerisen ultrasuodatuskalvon modifiointimahdollisuuksia prosessiolosuhteita muuttamalla. Kalvon modifioimisella pyritään sen suodatusominaisuuksien muuttumiseen, joka voi lisätä kalvon käyttökohteita ja parantaa kalvon soveltuvuutta tiettyjen yhdisteiden suodatukseen. Hydrofiilisiä, tiukkoja polymeerisiä ultrasuodatuskalvoja on kaupallisesti saatavilla vähän, joten työssä tutkittiin niiden valmistusta modifioimalla markkinoilla olevaa, löysempää, hydrofiilistä, polymeeristä ultrasuodatuskalvoa. Ultrasuodatuskalvo modifioitiin paineen, lämpötilan ja emäksen avulla. Modifioinnin aiheuttamat muutokset voidaan jakaa pysyviin, osittain palautuviin tai palautuviin muutoksiin. Kalvon rakenteen muuttuessa pysyvästi voidaan kalvo modifioida ennen suodatuksen aloittamista. Tällöin modifioinnissa käytetyt olosuhteet eivät vaikuta suodatukseen kuten muissa tapauksissa. Modifioinnin vaikutusta kalvoon voidaan analysoida eri menetelmillä. Näitä ovat esimerkiksi elektronimikroskopia ja kalvon vuon tai retention analysointi. Mikroskooppikuvia ei voida ottaa suodatuksen aikana, vaan kalvosta saada tietoa ainoastaan alku- ja lopputilanteissa suodatusolosuhteista poistettuna. Vuon ja retention avulla saadaan reaaliaikaista tietoa modifioidun kalvon suodatuskapasiteetin ja erotuskyvyn muutoksista. Työssä modifioinnin vaikutusta seurattiin vuo- ja retentiomittausten avulla ja kalvon rakenteessa tapahtuvia muutoksia tutkittiin pyyhkäisyelektronimikroskooppikuvien ja mikrometrimittausten avulla. Korkeampaa painetta tai lämpötilaa käytettäessä havaittiin vuon alenevan modifioitaessa enemmän kuin matalammissa paineissa tai lämpötiloissa. Korkeampi puristuslämpötila kasvatti myös retentiota. Modifiointiolosuhteiden ollessa emäksisiä aleni permeabiliteetti neutraaleissa olosuhteissa tehtyä puristusta enemmän. Myös retentio aleni emäksen avulla tehdyssä modifioinnissa. Kalvon rakenteessa tapahtuneiden muutosten palautuminen riippui modifiointilämpötilasta, korkeassa lämpötilassa modifioidussa kalvossa palautumista ei tapahtunut. Modifioinnin aiheuttamat kalvojen paksuuden muutokset tukivat retentio- ja vuomittauksia. Pyyhkäisyelektronimikroskooppikuvista voitiin havaita kalvon huokosrakenteen puristuneen modifioinnin aikana.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A transmission electron microscope study was carried out on Babesia equi obtained from a splenectomized horse, from the municipality of Santa Luzia, Minas Gerais, Brazil. The isolate was inoculated into two splenectomized foals (1.05 x 10(10) parasitized erythrocytes by B. equi). Trophozoites have a single membrane in direct contact with the cytoplasm of the red blood cells, a prominent nucleus, well-developed rough and smooth endoplasmic reticulum, numerous free ribosomes and small food vacuoles. B. equi trophozoites have a cytostome and a long tubular feeding structure in direct contact with the blood plasma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different from most mammalian species, the optic nerve of the rabbit eye is initially formed inside the retina where myelination of the axons of the ganglion cells starts and vascularization occurs. Astrocytes are confined to these regions. The aforementioned nerve fibers known as medullated nerve fibers form two bundles that may be identified with the naked eye. The blood vessels run on the inner surface of these nerve fiber bundles (epivascularization) and, accordingly, the accompanying astrocytes lie mostly facing the vitreous body from which they are separated only by the inner limiting membrane of the retina. The arrangement of the astrocytes around blood vessels leads to the formation of structures known as glial tufts. Fragments (N = 3) or whole pieces (N = 3) of the medullated nerve fiber region of three-month-old male rabbits (Orictolagus cuniculus) were fixed in glutaraldehyde followed by osmium tetroxide, and their thin sections were examined with a transmission electron microscope. Randomly located discontinuities (up to a few micrometers long) of the basement membrane of the inner limiting membrane of the retina were observed in the glial tufts. As a consequence, a direct contact between the astrocyte plasma membrane and vitreous elements was demonstrated, making possible functional interactions such as macromolecular exchanges between this glial cell type and the components of the vitreous body.