965 resultados para Electricity field intensity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In high intensity and high gradient magnetic fields the volumetric force on diamagnetic material, such as water, leads to conditions very similar to microgravity in a terrestrial laboratory. In principle, this opens the possibility to determine material properties of liquid samples without wall contact, even for electrically non-conducting materials. In contrast, AC field levitation is used for conductors, but then terrestrial conditions lead to turbulent flow driven by Lorentz forces. DC field damping of the flow is feasible and indeed practiced to allow property measurements. However, the AC/DC field combination acts preferentially on certain oscillation modes and leads to a shift in the droplet oscillation spectrum.What is the cause? A nonlinear spectral numerical model is presented, to address these problems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In high intensity and high gradient magnetic fields the volumetric force on diamagnetic material, such as water, leads to conditions very similar to microgravity in a terrestrial laboratory. In principle, this opens the possibility to determine material properties of liquid samples without wall contact, even for electrically non-conducting materials. In contrast, AC field levitation is used for conductors, but then terrestrial conditions lead to turbulent flow driven by Lorentz forces. DC field damping of the flow is feasible and indeed practiced to allow property measurements. However, the AC/DC field combination acts preferentially on certain oscillation modes and leads to a shift in the droplet oscillation spectrum.What is the cause? A nonlinear spectral numerical model is presented, to address these problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intense AC magnetic field required to produce levitation in terrestrial conditions, along with the buoyancy and thermo-capillary forces, results in turbulent convective flow within the droplet. The use of a homogenous DC magnetic field allows the convective flow to be damped. However the turbulence properties are affected at the same time, leading to a possibility that the effective turbulent damping is considerably reduced. The MHD modified K-Omega turbulence model allows the investigation of the effect of magnetic field on the turbulence. The model incorporates free surface deformation, the temperature dependent surface tension, turbulent momentum transport, electromagnetic and gravity forces. The model is adapted to incorporate a periodic laser heating at the top of the droplet, which have been used to measure the thermal conductivity of the material by calculating the phase lag between the frequency of the laser heating and the temperature response at the bottom. The numerical simulations show that with the gradual increase of the DC field the fluid flow within the droplet is initially increasing in intensity. Only after a certain threshold magnitude of the field the flow intensity starts to decrease. In order to achieve the flow conditions close to the ‘laminar’ a D.C. magnetic field >4 Tesla is required to measure the thermal conductivity accurately. The reduction in the AC field driven flow in the main body of the drop leads to a noticeable thermo-capillary convection at the edge of the droplet. The uniform vertical DC magnetic field does not stop a translational oscillation of the droplet along the field, which is caused by the variation in total levitation force due to the time-dependent surface deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an experimental technique for the comparison of ionization processes in ultrafast laser pulses irrespective of pulse ellipticity. Multiple ionization of xenon by 50 fs 790 nm, linearly and circularly polarized laser pulses is observed over the intensity range 10 TW/cm(2) to 10 PW/cm(2) using effective intensity matching (EIM), which is coupled with intensity selective scanning (ISS) to recover the geometry-independent probability of ionization. Such measurements, made possible by quantifying diffraction effects in the laser focus, are compared directly to theoretical predictions of multiphoton, tunnel and field ionization, and a remarkable agreement demonstrated. EIM-ISS allows the straightforward quantification of the probability of recollision ionization in a linearly polarized laser pulse. Furthermore, the probability of ionization is discussed in terms of the Keldysh adiabaticity parameter gamma, and the influence of the precursor ionic states present in recollision ionization is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical transmission of a two-dimensional array of subwavelength holes in a metal film has been numerically studied using a differential method. Transmission spectra have been calculated showing a significant increase of the transmission in certain spectral ranges corresponding to the excitation of the surface polariton Bloch waves on a metal surface with a periodic hole structure. Under the enhanced transmission conditions, the near-field distribution of the transmitted light reveals an intensity enhancement greater than 2 orders of magnitude in localized (similar to 40 nm) spots resulting from the interference of the surface polaritons Bragg scattered by the holes in an array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionization dynamics of H2 + exposed to high-intensity, high-frequency, ultrashort laser pulses is investigated with two theoretical approaches. The time-dependent Schrödinger equation is solved by a direct numerical method, and a simple two-center interference-diffraction model is studied. The energy and angular distributions of the photoelectron for various internuclear distances and relative orientations between the internuclear axis of the molecule and the polarization of the field are calculated. The main features of the photoelectron spectrum pattern are described well by the interference-diffraction model, and excellent quantitative agreement between the two methods is found. The effect of quantal vibration on the photoelectron spectrum is also calculated. We find that vibrational average produces some broadening of the main features, but that the patterns remain clearly distinguishable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: To investigate the potential of intensity-modulated radiotherapy (IMRT) to reduce lung irradiation in the treatment of oesophageal carcinoma with radical radiotherapy.Materials and methods: A treatment planning study was performed to compare two-phase conformal radiotherapy (CFRT) with IMRT in five patients. The CFRT plans consisted of anterior, posterior and bilateral posterior oblique fields, while the IMRT plans consisted of either nine equispaced fields (9F), or four fields (4F) with orientations equal to the CFRT plans. IMRT plans with seven, five or three equispaced fields were also investigated in one patient. Treatment plans were compared using dose-volume histograms and normal tissue complication probabilities.Results: The 9F IMRT plan was unable to improve on the homogeneity of dose to the planning target volume (PTV), compared with the CFRT plan (dose range, 16.9+/-4.5 (1 SD) vs. 12.4+/-3.9%; P=0.06). Similarly, the 9F IMRT plan was unable to reduce the mean lung dose (11.7+/-3.2 vs. 11.0+/-2.9 Gy; P=0.2). Similar results were obtained for seven, five and three equispaced fields in the single patient studied. The 4F IMRT plan provided comparable PTV dose homogeneity with the CFRT plan (11.8+/-3.3 vs. 12.4+/-3.9%; P=0.6), with reduced mean lung dose (9.5+/-2.3 vs 11.0+/-2.9 Gy; P=0.001).Conclusions: IMRT using nine equispaced fields provided no improvement over CFRT. This was because the larger number of fields in the IMRT plan distributed a low dose over the entire lung. In contrast, IMRT using four fields equal to the CFRT fields offered an improvement in lung sparing. Thus, IMRT with a few carefully chosen field directions may lead to a modest reduction in pneumonitis, or allow tumour dose escalation within the currently accepted lung toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) techniques to see whether doses to critical structures could be reduced while maintaining planning target volume (PTV) coverage in patients receiving conventional radiotherapy (RT) for carcinoma of the maxillary sinus because of the risk of radiation-induced complications, particularly visual loss. Six patients who had recently received conventional RT for carcinoma of the maxillary sinus were studied. Conventional RT, 3D-CRT, and step-and-shoot IMRT plans were prepared using the same 2-field arrangement. The effect of reducing the number of segments in the IMRT beams was investigated. 3D-CRT and IMRT reduced the brain and ipsilateral parotid gland doses compared with the conventional plans. IMRT reduced doses to both optic nerves; for the contralateral optic nerve, 15-segment IMRT plans delivered an average maximal dose of 56.4 Gy (range 53.9–59.3) compared with 65.7 Gy (range 65.3–65.9) and 64.2 Gy (range 61.4–65.6) for conventional RT and 3D-CRT, respectively. IMRT also gave improved PTV homogeneity and improved coverage, with an average of 8.5% (range 7.0–11.7%) of the volume receiving

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: To compare external beam radiotherapy techniques for parotid gland tumours using conventional radiotherapy (RT), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT). To optimise the IMRT techniques, and to produce an IMRT class solution.Materials and methods: The planning target volume (PTV), contra-lateral parotid gland, oral cavity, brain-stem, brain and cochlea were outlined on CT planning scans of six patients with parotid gland tumours. Optimised conventional RT and 3DCRT plans were created and compared with inverse-planned IMRT dose distributions using dose-volume histograms. The aim was to reduce the radiation dose to organs at risk and improve the PTV dose distribution. A beam-direction optimisation algorithm was used to improve the dose distribution of the IMRT plans, and a class solution for parotid gland IMRT was investigated.Results: 3DCRT plans produced an equivalent PTV irradiation and reduced the dose to the cochlea, oral cavity, brain, and other normal tissues compared with conventional RT. IMRT further reduced the radiation dose to the cochlea and oral cavity compared with 3DCRT. For nine- and seven-field IMRT techniques, there was an increase in low-dose radiation to non-target tissue and the contra-lateral parotid gland. IMRT plans produced using three to five optimised intensity-modulated beam directions maintained the advantages of the more complex IMRT plans, and reduced the contra-lateral parotid gland dose to acceptable levels. Three- and four-field non-coplanar beam arrangements increased the volume of brain irradiated, and increased PTV dose inhomogeneity. A four-field class solution consisting of paired ipsilateral coplanar anterior and posterior oblique beams (15, 45, 145 and 170o from the anterior plane) was developed which maintained the benefits without the complexity of individual patient optimisation.Conclusions: For patients with parotid gland tumours, reduction in the radiation dose to critical normal tissues was demonstrated with 3DCRT compared with conventional RT. IMRT produced a further reduction in the dose to the cochlea and oral cavity. With nine and seven fields, the dose to the contra-lateral parotid gland was increased, but this was avoided by optimisation of the beam directions. The benefits of IMRT were maintained with three or four fields when the beam angles were optimised, but were also achieved using a four-field class solution. Clinical trials are required to confirm the clinical benefits of these improved dose distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of dissociation of pre-ionized D2+ molecules using intense (10^12–10^15 W cm-2), ultrashort (50 fs), infrared (? = 790 nm) laser pulses are examined. Use of an intensity selective scan technique has allowed the deuterium energy spectrum to be measured over a broad range of intensity. It is found that the dominant emission shifts to lower energies as intensity is increased, in good agreement with corresponding wavepacket simulations. The results are consistent with an interpretation in terms of bond softening, which at high intensity (approximately >3 × 10^14 W cm-2) becomes dominated by dissociative ionization. Angular distribution measurements reveal the presence of slow molecular dissociation, an indication that vibrational trapping mechanisms occur in this molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrashort (<15 fs) high intensity (1014-1016 W cm-2) laser pulses have provided novel methods for investigation of the dynamics of simple molecular ions such as H2+ and D2+. In this paper we report on simulations carried out for the D2+ molecular ion, within the Born- Oppenheimer and two-state approximations. These simulations allow one to investigate the dissociation dynamics of the D2+ molecular ion when subjected to such ultrashort, intense laser pulses. In particular, these simulations are compared to the results from recent pump-probe experiments, in which, the nuclear vibrational motion of D2+ has been imaged. Simulations suggest that the nature of the dissociation process, be it 1- or 2-photon, may be influenced by the tuning of the pump-probe delay time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fast beam of H-2(+) ions, produced from a low energy ion accelerator, has been used for the first time in intense laser field experiments. The technique has enabled neutral dissociation products to be analysed and detected for the first time in such studies. Energy spectra of neutral and ionized fragments, product yields as a function of focused laser intensity and angular distributions of neutral dissociation products have been measured. Significant differences are observed between the present results and those obtained from experiments involving neutral H-2 molecules. These differences are indicative of the precursor H-2 molecule playing an important and hitherto neglected formative role in the laser-induced fragmentation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report full-dimensionality quantum and classical calculations of double ionization (DI) of laser-driven helium at 390 nm. Good agreement is observed. We identify the relative importance of the two main non-sequential DI pathways, the direct|with an almost simultaneous ejection of both electrons|and the delayed. We find that the delayed pathway prevails at small intensities independently of total electron energy but at high intensities the direct pathway predominates up to a certain upper-limit in total energy which increases with intensity. An explanation for this increase with intensity is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of strong-field (i.e. intensities in excess of 10(13) Wcm(-2)) few-cycle ultrafast (durations of 10 femtoseconds or less) laser pulses to create, manipulate and image vibrational wavepackets is investigated. Quasi-classical modelling of the initial superposition through tunnel ionization, wavepacket modification by nonadiabatically altering the nuclear environment via the transition dipole and the Stark effect, and measuring the control outcome by fragmenting the molecule is detailed. The influence of the laser intensity on strong-field ultrafast wavepacket control is discussed in detail: by modifying the distribution of laser intensities imaged, we show that focal conditions can be created that give preference to this three-pulse technique above processes induced by the pulses alone. An experimental demonstration is presented, and the nuclear dynamics inferred by the quasi-classical model discussed. Finally, we present the results of a systematic investigation of a dual-control pulse scheme, indicating that single vibrational states should be observable with high fidelity, and the populated state defined by varying the arrival time of the two control pulses. The relevance of such strong-field coherent control methods to the manipulation of electron localization and attosecond science is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double slits have been incorporated in a flat field spectrometer to record spatially resolved and integrated spectra simultaneously. Variation of the absorbed irradiance and ionisation stage along the fibre plasmas has been monitored. By comparison of the spatially resolved and integrated resonance line ratios, it is found that the spatially integrated values deviated significantly from the real experimental circumstances due to nonuniformity along the plasmas.