886 resultados para Electrical power generation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-frequency-link micro inverter is proposed with a front-end dual inductor push-pull converter and a grid-connected half-wave cycloconverter. Pulse width modulation is used to control the front-end converter and phase shift modulation is used at the back-end converter to obtain grid synchronized output current. A series resonant circuit and high-frequency transformer are used to interface the front-end and the back-end converters. The operation of the proposed micro-inverter in grid-connected mode is validated using MATLAB/Simpower simulation. Experimental results are provided to further validate the operation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results are presented of applying multi-time scale analysis using the singular perturbation technique for long time simulation of power system problems. A linear system represented in state-space form can be decoupled into slow and fast subsystems. These subsystems can be simulated with different time steps and then recombined to obtain the system response. Simulation results with a two-time scale analysis of a power system show a large saving in computational costs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy-based direct methods for transient stability analysis are potentially useful both as offline tools for planning purposes as well as for online security assessment. In this paper, a novel structure-preserving energy function (SPEF) is developed using the philosophy of structure-preserving model for the system and detailed generator model including flux decay, transient saliency, automatic voltage regulator (AVR), exciter and damper winding. A simpler and yet general expression for the SPEF is also derived which can simplify the computation of the energy function. The system equations and the energy function are derived using the centre-of-inertia (COI) formulation and the system loads are modelled as arbitrary functions of the respective bus voltages. Application of the proposed SPEF to transient stability evaluation of power systems is illustrated with numerical examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An application of direct methods to dynamic security assessment of power systems using structure-preserving energy functions (SPEF) is presented. The transient energy margin (TEM) is used as an index for checking the stability of the system as well as ranking the contigencies based on their severity. The computation of the TEM requires the evaluation of the critical energy and the energy at fault clearing. Usually this is done by simulating the faulted trajectory, which is time-consuming. In this paper, a new algorithm which eliminates the faulted trajectory estimation is presented to calculate the TEM. The system equations and the SPEF are developed using the centre-of-inertia (COI) formulation and the loads are modelled as arbitrary functions of the respective bus voltages. The critical energy is evaluated using the potential energy boundary surface (PEBS) method. The method is illustrated by considering two realistic power system examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

FACTS controllers are emerging as viable and economic solutions to the problems of large interconnected ne networks, which can endanger the system security. These devices are characterized by their fast response, absence of inertia, and minimum maintenance requirements. Thyristor controlled equipment like Thyristor Controlled Series Capacitor (TCSC), Static Var Compensator (SVC), Thyristor Controlled Phase angle Regulator (TCPR) etc. which involve passive elements result in devices of large sizes with substantial cost and significant labour for installation. An all solid-state device using GTOs leads to reduction in equipment size and has improved performance. The Unified Power Flow Controller (UPFC) is a versatile controller which can be used to control the active and reactive power in the Line independently. The concept of UPFC makes it possible to handle practically all power flow control and transmission line compensation problems, using solid-state controllers, which provide functional flexibility, generally not attainable by conventional thyristor controlled systems. In this paper, we present the development of a control scheme for the series injected voltage of the UPFC to damp the power oscillations and improve transient stability in a power system. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a prototype of a fuzzy system for alleviation of network overloads in the day-to-day operation of power systems. The control used for overload alleviation is real power generation rescheduling. Generation Shift Sensitivity Factors (GSSF) are computed accurately, using a more realistic operational load flow model. Overloading of lines and sensitivity of controlling variables are translated into fuzzy set notations to formulate the relation between overloading of line and controlling ability of generation scheduling. A fuzzy rule based system is formed to select the controllers, their movement direction and step size. Overall sensitivity of line loading to each of the generation is also considered in selecting the controller. Results obtained for network overload alleviation of two modified Indian power networks of 24 bus and 82 bus with line outage contingencies are presented for illustration purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper explores the biomass based power generation potential of Africa. Access to electricity in sub-Saharan Africa (SSA) is about 26% and falls to less than 1% in the rural areas. On the basis of the agricultural and forest produce of this region, the residues generated after processing are estimated for all the countries. The paper also addresses the use of gasification technology - an efficient thermo-chemical process for distributed power generation - either to replace fossil fuel in an existing diesel engine based power generation system or to generate electricity using a gas engine. This approach enables the implementation of electrification programs in the rural sector and gives access to grid quality power. This study estimates power generation potential at about 5000 MW and 10,000 MW by using 30% of residues generated during agro processing and 10% of forest residues from the wood processing industry, respectively. A power generation potential of 15000 MW could generate 100 terawatt-hours (TWh), about 15% of current generation in SSA. The paper also summarizes some of the experience in using the biomass gasification technology for power generation in Africa and India. The paper also highlights the techno economics and key barriers to promotion of biomass energy in sub-Saharan Africa. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with the characterisation of tar from two configurations of bioresidue thermochemical conversion reactors designed for producer gas based power generation systems. The pulverised fuel reactor is a cyclone system (R1) and the solid bioresidue reactor (denoted R2) is an open top twin air entry system both at 75-90 kg/h capacity (to generate electricity similar to 100 kVA). The reactor, R2, has undergone rigorous test in a major Indo-Swiss programme for the tar quantity at various conditions. The former is a recent technology development. Tars collected from these systems by a standard tar collection apparatus at the laboratory at Indian Institute of Science have been analysed at the Royal Institute of Technology (KTH), Sweden. The results of these analyses show that these thermochemical conversion reactors behave differently from the earlier reactors reported in literature in so far as tar generation is concerned. The extent of tar in hot gas is about 700-800 ppm for R1 and 70-100 ppm for R2. The amounts of the major compounds - naphthalene and phenol-are much lower that what is generally understood to happen in the gasifiers in Europe. It is suggested that the longer residence times at high temperatures allowed for in these reactors is responsible for this behavior. It is concluded the new generation reactor concepts extensively tried out at lower power levels hold promise for high power atmospheric gasification systems for woody as well as pulverisable bioresidues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An improvised algorithm is presented for optimal VAr allocation in a large power system using a linear programming technique. The proposed method requires less computer memory than those algorithms currently available.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a method for minimizing the sum of the square of voltage deviations by a least-square minimization technique, and thus improving the voltage profile in a given system by adjusting control variables, such as tap position of transformers, reactive power injection of VAR sources and generator excitations. The control variables and dependent variables are related by a matrix J whose elements are computed as the sensitivity matrix. Linear programming is used to calculate voltage increments that minimize transmission losses. The active and reactive power optimization sub-problems are solved separately taking advantage of the loose coupling between the two problems. The proposed algorithm is applied to IEEE 14-and 30-bus systems and numerical results are presented. The method is computationally fast and promises to be suitable for implementation in real-time dispatch centres.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction of processor based instruments in power systems is resulting in the rapid growth of the measured data volume. The present practice in most of the utilities is to store only some of the important data in a retrievable fashion for a limited period. Subsequently even this data is either deleted or stored in some back up devices. The investigations presented here explore the application of lossless data compression techniques for the purpose of archiving all the operational data - so that they can be put to more effective use. Four arithmetic coding methods suitably modified for handling power system steady state operational data are proposed here. The performance of the proposed methods are evaluated using actual data pertaining to the Southern Regional Grid of India. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new generator topology for microhydel power plants, capable of unsupervised operation, is proposed. While conventional microhydel plants operate at constant speed with switched ballast loads, the proposed generator, based on the wound rotor induction machine, operates at variable speed and does away with the need for ballast loads. This increases reliability and substantially decreases system costs and setup times. The proposed generator has a simplified decoupled control structure with stator-referenced voltage control similar to a conventional synchronous generator, and rotor-side frequency control that is facilitated by rotating electronics mounted on the rotor. While this paper describes an isolated plant, the topology can also be tailored for distributed generation enabling conversion of the available hydraulic power into useful electrical power when the grid is present, and supplying local loads in the event of grid outage.