283 resultados para Elbow tendionitis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess the intra-reader and inter-reader reliabilities of interpreting ultrasonography by several experts using video clips. METHOD: 99 video clips of healthy and rheumatic joints were recorded and delivered to 17 physician sonographers in two rounds. The intra-reader and inter-reader reliabilities of interpreting the ultrasound results were calculated using a dichotomous system (normal/abnormal) and a graded semiquantitative scoring system. RESULTS: The video reading method worked well. 70% of the readers could classify at least 70% of the cases correctly as normal or abnormal. The distribution of readers answering correctly was wide. The most difficult joints to assess were the elbow, wrist, metacarpophalangeal (MCP) and knee joints. The intra-reader and inter-reader agreements on interpreting dynamic ultrasound images as normal or abnormal, as well as detecting and scoring a Doppler signal were moderate to good (kappa = 0.52-0.82). CONCLUSIONS: Dynamic image assessment (video clips) can be used as an alternative method in ultrasonography reliability studies. The intra-reader and inter-reader reliabilities of ultrasonography in dynamic image reading are acceptable, but more definitions and training are needed to improve sonographic reproducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 13 patients, the development of supraspinatus muscle atrophy and fatty infiltration after rotator cuff tendon repair was quantified prospectively via magnetic resonance imaging. Intraoperative electrical nerve stimulation at repair showed that the maximal supraspinatus tension (up to 200 N) strongly correlated with the anatomic cross-sectional muscle area and with muscle fatty infiltration (ranging from 12 N/cm(2) in Goutallier stage 3 to 42 N/cm(2) in Goutallier stage 0). Within 1 year after successful tendon repair (n = 8), fatty infiltration did not recover, and atrophy improved partially at best; however, if the repair failed (n = 5), atrophy and fatty infiltration progressed significantly. The ability of the rotator cuff muscles to develop tension not only correlates with their atrophy but also closely correlates with their degree of fatty infiltration. With current repair techniques, atrophy and fatty infiltration appear to be irreversible, despite successful tendon repair. Unexpectedly, not only weak but also very strong muscles are at risk for repair failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The use of conventional implants for intramedullary nailing of humeral shaft fractures is associated with specific difficulties. During antegrade implantation structures of the rotator cuff can be affected leading to a reduced functional result of the shoulder. If the nail is implanted in a retrograde manner problems arise due to a relatively large hole close to or within the olecranon fossa, which is necessary for insertion of the nail. Supracondylar fractures as well as persistent elbow pain and loss of function are reported in the literature. To overcome these disadvantages a flexible nail has been developed that can be stiffened and locked after implantation. METHOD: Between October 2000 and February 2002, 34 patients were treated with the flexible nail at our institution; 29 were available for follow-up. Fracture healing was documented on radiographs and clinical outcome was evaluated with use of the Constant as well as the Kwasny score. RESULTS: Median duration until fracture consolidation was 10 weeks. In two patients fracture union was not achieved within the follow-up period. The median outcome measured with the Constant score was 93 points and 2.5 with the Kwasny score. Both values correspond to a very good functional outcome. CONCLUSION: We conclude that the flexible humeral nail is an excellent treatment option for humeral shaft fractures. Damage to the rotator cuff and the distal humerus can be avoided due to its unique flexible construction, improving the functional outcome of intramedullary nailing for the treatment of humeral shaft fractures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Percutaneous Kirschner wire fixation represents the classic treatment for displaced supracondylar humeral fractures in childhood. This type of treatment first requires satisfactory reduction of the fracture. Failure to achieve a satisfactory reduction or inadequate stabilization can result in instability of the fracture fragments, which can result in either an unsatisfactory cosmetic or functional outcome. In our experience, these problems can be overcome with the use of a small lateral external fixator. METHODS: Between 1999 and 2005, thirty-one of 170 Gartland type-III supracondylar humeral fractures were treated with a lateral external fixator. The outcome of treatment was analyzed with regard to limb alignment, elbow movement, cosmetic appearance, and patient satisfaction. RESULTS: In twenty-eight of the thirty-one patients, a satisfactory reduction was achieved with closed methods. All children except one had a normal or good range of movement. The cosmetic result was excellent in all cases. All of the children and their parents stated that they would choose this treatment again. CONCLUSIONS: The use of a small lateral external fixator seems to be a safe alternative for the treatment of displaced supracondylar fractures of the humerus when a closed reduction appears to be unattainable by means of manipulation alone or when sufficient stability is not achieved with standard methods of Kirschner wire fixation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HYPOTHESIS: This study addresses the outcome after osteosynthesis or hemiarthroplasty, using a cohort of patients that was enrolled in a previous prospective study on humeral head perfusion and was consequently treated using a common conceptual approach. MATERIALS AND METHODS: Between 1998 and 2001, 98 patients with 100 fractures of the proximal humerus were treated surgically by a single surgeon with open reduction and internal fixation (ORIF) (51/100, group A, median age 54 years; range, 21-88) or with hemiarthroplasty (49/100, group B, median age 66 years; range, 38-87). Seventy-six of 98 patients were available for re-evaluation at a mean follow-up of five years (3.3-7.3) using the Constant-Murley score (CMS), the Subjective Shoulder Value (SSV), and conventional radiographs. RESULTS: The median total CMS was 77 (range, 37-98) for group A and 70 (range, 39-84) for group B. The median SSV was 92 (range, 40-100) for group A and 90 (range, 40-100) for group B. Avascular necrosis occured in 6/40 fractures treated with ORIF. CONCLUSION: Osteosynthesis and hemiarthroplasty yield similar functional results and comparable patient satisfaction following the applied decision making process in this selected patient cohort. Osteosynthesis with preservation of the humeral head is worth considering when adequate reduction and stable conditions for revascularization can be obtained. In patients with osteopenic bone and/or comminuted fractures, hemiarthroplasty is a viable alternative. LEVEL OF EVIDENCE: Level 2; Prospective non-randomized comparison study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HYPOTHESIS: Chronic rotator cuff tears are associated with irreversible architectural muscle changes and a high rate of repair failure. The changes observed in man and their irreversibility with a single stage repair can be reproduced in sheep. It was the purpose of this experiment to test the hypothesis that slow, continuous elongation of a retracted musculotendinous unit allows reversal of the currently irreversible structural muscle changes. MATERIALS AND METHODS: The infraspinatus tendon of 12 sheep was released using a greater tuberosity osteotomy and allowed to retract for 4 months. Then, a new device was mounted on the scapular spine and used to extend the infraspinatus muscuculotendinous unit transcutaneously by 1 mm per day. Thereafter, the tendon was repaired back to the greater tuberosity. We assessed the muscular architecture using magnetic resonance imaging, macroscopic dissection, histology, and electron microscopy. Fatty infiltration (in Hounsfield units 1/4 HU) and muscular cross-sectional area (in % of the control side) were monitored with computed tomography at tendon release, initiation of elongation, repair, and at sacrifice. RESULTS: Sixteen weeks after tendon release, the mean tendon retraction was 29 +/- 6 mm (14% of original length, P = .008). In 8 sheep, elongation was achieved as planned (group I), but in 4, the elongation failed technically (group II). The mean traction time was 24 +/- 6 days with a mean traction distance of 19 +/- 4 mm. At sacrifice, the mean pennation angle in the infraspinatus of group I was not different from the control side (29.8 degrees +/-7.5 degrees vs. 30 degrees +/-6 degrees , P = .575). In group II, the pennation angle had increased from 30 degrees +/-6 degrees to 55 degrees +/-14 degrees (P = .035). There was no fatty infiltration at the time of tendon release. After retraction, there was a significant increase in fatty infiltration of the infraspinatus muscle and a decrease of its cross-sectional area to 57% of the contralateral side (P = .0001). During traction, the degree of fatty infiltration remained unchanged (36 HU to 38 HU, P = .381), and atrophy improved to a muscle square area of 78% of the contralateral side (P = .0001) in group I. In group II, an increase of fatty infiltration was measured from 36 HU to 28 HU; however, this increase was not significant (P = .144). Atrophy did not change in group II (57-55%, P = .946). At sacrifice, the remaining muscle mass was 64% in group I and 46% in group II (P = .019). DISCUSSION: Our preliminary results document, that continuous elongation of a retracted, fatty infiltrated and atrophied musculotendinous unit is technically feasible. CONCLUSION: In the sheep, continuous elongation can lead to restoration of normal muscle architecture, to partial reversal of muscle atrophy, and to arrest of the progression of fatty infiltration. LEVEL OF EVIDENCE: Basic science level 2; Prospective comparative therapeutic study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immersive virtual environments (IVEs) have the potential to afford natural interaction in the three-dimensional (3D) space around a user. However, interaction performance in 3D mid-air is often reduced and depends on a variety of ergonomics factors, the user's endurance, muscular strength, as well as fitness. In particular, in contrast to traditional desktop-based setups, users often cannot rest their arms in a comfortable pose during the interaction. In this article we analyze the impact of comfort on 3D selection tasks in an immersive desktop setup. First, in a pre-study we identified how comfortable or uncomfortable specific interaction positions and poses are for users who are standing upright. Then, we investigated differences in 3D selection task performance when users interact with their hands in a comfortable or uncomfortable body pose, while sitting on a chair in front of a table while the VE was displayed on a headmounted display (HMD). We conducted a Fitts' Law experiment to evaluate selection performance in different poses. The results suggest that users achieve a significantly higher performance in a comfortable pose when they rest their elbow on the table.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Bone-to-tendon healing after rotator cuff repairs is mainly impaired by poor tissue quality. The tenocytes of chronic rotator cuff tendon tears are not able to synthesize normal fibrocartilaginous extracellular matrix (ECM). We hypothesized that in the presence of platelet-released growth factors (PRGF), tenocytes from chronically retracted rotator cuff tendons proliferate and synthesize the appropriate ECM proteins. MATERIALS AND METHODS Tenocytes from 8 patients with chronic rotator cuff tears were cultured for 4 weeks in 2 different media: standard medium (Iscove's Modified Dulbecco's Media + 10% fetal calf serum + 1% nonessential amino acids + 0.5 μg/mL ascorbic acid) and media with an additional 10% PRGF. Cell proliferation was assessed at 7, 14, 21, and 28 days. Messenger (m)RNA levels of collagens I, II, and X, decorin, biglycan, and aggrecan were analyzed using real time reverse-transcription polymerase chain reaction. Immunocytochemistry was also performed. RESULTS The proliferation rate of tenocytes was significantly higher at all time points when cultured with PRGF. At 21 days, the mRNA levels for collagens I, II, and X, decorin, aggrecan, and biglycan were significantly higher in the PRGF group. The mRNA data were confirmed at protein level by immunocytochemistry. CONCLUSIONS PRGFs enhance tenocyte proliferation in vitro and promote synthesis of ECM to levels similar to those found with insertion of the normal human rotator cuffs. CLINICAL RELEVANCE Biologic augmentation of repaired rotator cuffs with PRGF may enhance the properties of the repair tissue. However, further studies are needed to determine if application of PRGF remains safe and effective in long-term clinical studies. LEVEL OF EVIDENCE Basic Science Study, Cell Biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Micro- or macroreplantation is classified depending on the level of amputation, distal or proximal to the wrist. This study was performed to review our experience in macroreplantation of the upper extremity with special attention to technical considerations and outcomes. MATERIALS AND METHODS Between January 1990 and December 2010, 11 patients with a complete amputation of the upper extremity proximal to the wrist were referred for replantations to our department. The patients, one woman and ten men, had a mean age of 43.4 ± 18.2 years (range 19-76 years). There were two elbow, two proximal forearm, four mid-forearm, and three distal forearm amputations. The mechanism of injury was crush in four, crush-avulsion in five and guillotine amputation in two patients. The Chen classification was used to assess the postoperative outcomes. The mean follow-up after macroreplantation was 7.5 ± 6.3 years (range 2-21 years). RESULTS All but one were successfully replanted and regained limb function: Chen I in four cases (36 %), Chen II in three cases (27 %), Chen III in two cases (18 %), and Chen IV in one patient (9 %). We discuss the steps of the macroreplantation technique, the need to minimize ischemic time and the risk of ischemia reperfusion injuries. CONCLUSION Thanks to improvements in technique, the indications for limb preservation after amputation can be expanded. However, because of their rarity, replantations should be performed at specialist replantation centers. LEVEL OF EVIDENCE Level IV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HYPOTHESIS We hypothesized that arthroscopic rotator cuff repairs using leukocyte- and platelet-rich fibrin (L-PRF) in a standardized, modified protocol is technically feasible and results in a higher vascularization response and watertight healing rate during early healing. METHODS Twenty patients with chronic rotator cuff tears were randomly assigned to 2 treatment groups. In the test group (N = 10), L-PRF was added in between the tendon and the bone during arthroscopic rotator cuff repair. The second group served as control (N = 10). They received the same arthroscopic treatment without the use of L-PRF. We used a double-row tension band technique. Clinical examinations including subjective shoulder value, visual analog scale, Constant, and Simple Shoulder Test scores and measurement of the vascularization with power Doppler ultrasonography were made at 6 and 12 weeks. RESULTS There have been no postoperative complications. At 6 and 12 weeks, there was no significant difference in the clinical scores between the test and the control groups. The mean vascularization index of the surgical tendon-to-bone insertions was always significantly higher in the L-PRF group than in the contralateral healthy shoulders at 6 and 12 weeks (P = .0001). Whereas the L-PRF group showed a higher vascularization compared with the control group at 6 weeks (P = .001), there was no difference after 12 weeks of follow-up (P = .889). Watertight healing was obtained in 89% of the repaired cuffs. DISCUSSION/CONCLUSIONS Arthroscopic rotator cuff repair with the application of L-PRF is technically feasible and yields higher early vascularization. Increased vascularization may potentially predispose to an increased and earlier cellular response and an increased healing rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robotic exoskeletons can be used to study and treat patients with neurological impairments. They can guide and support the human limb over a large range of motion, which requires that the movement trajectory of the exoskeleton coincide with the one of the human arm. This is straightforward to achieve for rather simple joints like the elbow, but very challenging for complex joints like the human shoulder, which is comprised by several bones and can exhibit a movement with multiple rotational and translational degrees of freedom. Thus, several research groups have developed different shoulder actuation mechanism. However, there are no experimental studies that directly compare the comfort of two different shoulder actuation mechanisms. In this study, the comfort and the naturalness of the new shoulder actuation mechanism of the ARMin III exoskeleton are compared to a ball-and-socket-type shoulder actuation. The study was conducted in 20 healthy subjects using questionnaires and 3D-motion records to assess comfort and naturalness. The results indicate that the new shoulder actuation is slightly better than a ball-and-socket-type actuation. However, the differences are small, and under the tested conditions, the comfort and the naturalness of the two tested shoulder actuations do not differ a lot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rehabilitation robots have become important tools in stroke rehabilitation. Compared to manual arm training, robot-supported training can be more intensive, of longer duration and more repetitive. Therefore, robots have the potential to improve the rehabilitation process in stroke patients. Whereas a majority of previous work in upper limb rehabilitation robotics has focused on end-effector-based robots, a shift towards exoskeleton robots is taking place because they offer a better guidance of the human arm, especially for movements with a large range of motion. However, the implementation of an exoskeleton device introduces the challenge of reproducing the motion of the human shoulder, which is one of the most complex joints of the body. Thus, this paper starts with describing a simplified model of the human shoulder. On the basis of that model, a new ergonomic shoulder actuation principle that provides motion of the humerus head is proposed, and its implementation in the ARMin III arm therapy robot is described. The focus lies on the mechanics and actuation principle. The ARMin III robot provides three actuated degrees of freedom for the shoulder and one for the elbow joint. An additional module provides actuated lower arm pro/supination and wrist flexion/extension. Five ARMin III devices have been manufactured and they are currently undergoing clinical evaluation in hospitals in Switzerland and in the United States.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Several clinical studies on chronic stroke conducted with end-effector-based robots showed improvement of the motor function in the affected arm. Compared to end-effector-based robots, exoskeleton robots provide improved guidance of the human limb and are better suited to train task-oriented movements with a large range of motions. OBJECTIVE: To test whether intensive arm training with the arm exoskeleton ARMin I is feasible with chronic-stroke patients and whether it improves motor function in the paretic arm. METHODS: Three single cases with chronic hemiparesis resulting from unilateral stroke (at least 14 months after stroke). A-B design with 2 weeks of multiple baseline measurements (A), 8 weeks of training (B) with repetitive measurements and a follow-up measurement 8 weeks after training. The training included shoulder and elbow movements with the robotic rehabilitation device ARMin I. Two subjects had three 1-hour sessions per week and 1 subject received five 1-hour sessions per week. The main outcome measurement was the upper-limb part of the Fugl-Meyer Assessment (FMA). RESULTS: The ARMin training was well tolerated by the patients, and the FMA showed moderate, but significant improvements for all 3 subjects (p < 0.05). Most improvements were maintained 8 weeks after discharge. CONCLUSIONS: This study indicates that intensive training with an arm exoskeleton is feasible with chronic-stroke patients. Moderate improvements were found in all 3 subjects, thus further clinical investigations are justified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Robot-assisted therapy offers a promising approach to neurorehabilitation, particularly for severely to moderately impaired stroke patients. The objective of this study was to investigate the effects of intensive arm training on motor performance in four chronic stroke patients using the robot ARMin II. METHODS: ARMin II is an exoskeleton robot with six degrees of freedom (DOF) moving shoulder, elbow and wrist joints. Four volunteers with chronic (>or= 12 months post-stroke) left side hemi-paresis and different levels of motor severity were enrolled in the study. They received robot-assisted therapy over a period of eight weeks, three to four therapy sessions per week, each session of one hour.Patients 1 and 4 had four one-hour training sessions per week and patients 2 and 3 had three one-hour training sessions per week. Primary outcome variable was the Fugl-Meyer Score of the upper extremity Assessment (FMA), secondary outcomes were the Wolf Motor Function Test (WMFT), the Catherine Bergego Scale (CBS), the Maximal Voluntary Torques (MVTs) and a questionnaire about ADL-tasks, progress, changes, motivation etc. RESULTS: Three out of four patients showed significant improvements (p < 0.05) in the main outcome. The improvements in the FMA scores were aligned with the objective results of MVTs. Most improvements were maintained or even increased from discharge to the six-month follow-up. CONCLUSION: Data clearly indicate that intensive arm therapy with the robot ARMin II can significantly improve motor function of the paretic arm in some stroke patients, even those in a chronic state. The findings of the study provide a basis for a subsequent controlled randomized clinical trial.