868 resultados para Elasticità Coordinazione Cloud Respect SYBL
Resumo:
A balloon tethered at an altitude of 20 km could deliver a particulate cloud leading to global cooling. Tethering a balloon at this altitude poses significant problems with respect to vibration and stability, especially in regions of high wind. No-one has ever proposed, yet alone launched, a balloon at an altitude of 20 km tethered to the ground. Owing to wind, the tether needs to be 23 km in length and is to be fixed to a ship at sea or on land in equatorial regions. Whilst the balloon at 20 km is subject to relatively modest wind conditions, at jet stream altitudes (10km) the tether will experience much higher wind loadings, not only because of the high wind speeds of up to 300 km / hr but also because of the high air density. A tether of circular cross section in these high winds will be subject to horizontal and downward drag forces that would bring the aerostat down. For this reason it is advantageous to consider a self-aligning tether of an aerodynamic cross section whereby it is possible to reduce the drag substantially. One disadvantage of a non-circular tether is the possibility of flutter and galloping instabilities. It is reasonably straightforward to model these phenomena for short lengths of aerofoil, but the situation becomes more complex for a 20 km tensioned tether with large deflection and curvature, variable wind speed, variable air density and variable tension. Analysis using models of infinite length are used to establish the stability at a local scale where the tension, aerodynamic and geometric properties are considered constant. Dispersion curve analysis is useful here. But for dynamics on a long-wavelength scale (several km) then a full non-linear analysis is required. This non-linear model can be used to establish the local values of tension appropriate for the dispersion analysis. This keynote presentation will give some insight into these issues.
Spectral dispersion of cloud droplet size distributions and radar threshold reflectivity for drizzle
Resumo:
Cloud computing is the technology prescription that will help the UK’s National Health Service (NHS) beat the budget constraints imposed as a consequence of the credit crunch. The internet based shared data and services resource will revolutionise the management of medical records and patient information while saving the NHS millions of pounds.
Resumo:
A report of key findings of the Cloud Library project, an effort jointly designed and executed by OCLC Research, the HathiTrust, New York University's Elmer Bobst Library, and the Research Collections Access & Preservation (ReCAP) consortium, with support from the The Andrew W. Mellon Foundation. The objective of the project was to examine the feasibility of outsourcing management of low-use print books held in academic libraries to shared service providers, including large-scale print and digital repositories.
Resumo:
Implementations are presented of two common algorithms for integer factorization, Pollard’s “p – 1” method and the SQUFOF method. The algorithms are implemented in the F# language, a functional programming language developed by Microsoft and officially released for the first time in 2010. The algorithms are thoroughly tested on a set of large integers (up to 64 bits in size), running both on a physical machine and a Windows Azure machine instance. Analysis of the relative performance between the two environments indicates comparable performance when taking into account the difference in computing power. Further analysis reveals that the relative performance of the Azure implementation tends to improve as the magnitudes of the integers increase, indicating that such an approach may be suitable for larger, more complex factorization tasks. Finally, several questions are presented for future research, including the performance of F# and related languages for more efficient, parallelizable algorithms, and the relative cost and performance of factorization algorithms in various environments, including physical hardware and commercial cloud computing offerings from the various vendors in the industry.
Resumo:
This paper introduces the original concept of a cloud personal assistant, a cloud service that manages the access of mobile clients to cloud services. The cloud personal assistant works in the cloud on behalf of its owner: it discovers services, invokes them, stores the results and history, and delivers the results to the mobile user immediately or when the user requests them. Preliminary experimental results that demonstrate the concept are included.
Resumo:
Nearly one billion smart mobile devices are now used for a growing number of tasks, such as browsing the web and accessing online services. In many communities, such devices are becoming the platform of choice for tasks traditionally carried out on a personal computer. However, despite the advances, these devices are still lacking in resources compared to their traditional desktop counterparts. Mobile cloud computing is seen as a new paradigm that can address the resource shortcomings in these devices with the plentiful computing resources of the cloud. This can enable the mobile device to be used for a large range of new applications hosted in the cloud that are too resource demanding to run locally. Bringing these two technologies together presents various difficulties. In this paper, we examine the advantages of the mobile cloud and the new approaches to applications it enables. We present our own solution to create a positive user experience for such applications and describe how it enables these applications.