853 resultados para Eigenmode estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we propose using small area estimators to improve the estimatesof both the small and large area parameters. When the objective is to estimateparameters at both levels accurately, optimality is achieved by a mixed sampledesign of fixed and proportional allocations. In the mixed sample design, oncea sample size has been determined, one fraction of it is distributedproportionally among the different small areas while the rest is evenlydistributed among them. We use Monte Carlo simulations to assess theperformance of the direct estimator and two composite covariant-freesmall area estimators, for different sample sizes and different sampledistributions. Performance is measured in terms of Mean Squared Errors(MSE) of both small and large area parameters. It is found that the adoptionof small area composite estimators open the possibility of 1) reducingsample size when precision is given, or 2) improving precision for a givensample size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of composite estimators of small area quantities that exploit spatial (distancerelated)similarity is derived. It is based on a distribution-free model for the areas, but theestimators are aimed to have optimal design-based properties. Composition is applied alsoto estimate some of the global parameters on which the small area estimators depend.It is shown that the commonly adopted assumption of random effects is not necessaryfor exploiting the similarity of the districts (borrowing strength across the districts). Themethods are applied in the estimation of the mean household sizes and the proportions ofsingle-member households in the counties (comarcas) of Catalonia. The simplest version ofthe estimators is more efficient than the established alternatives, even though the extentof spatial similarity is quite modest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We set up a dynamic model of firm investment in which liquidity constraintsenter explicity into the firm's maximization problem. The optimal policyrules are incorporated into a maximum likelihood procedure which estimatesthe structural parameters of the model. Investment is positively related tothe firm's internal financial position when the firm is relatively poor. This relationship disappears for wealthy firms, which can reach theirdesired level of investment. Borrowing is an increasing function of financial position for poor firms. This relationship is reversed as a firm's financial position improves, and large firms hold little debt.Liquidity constrained firms may be unused credits lines and the capacity toinvest further if they desire. However the fear that liquidity constraintswill become binding in the future induces them to invest only when internalresources increase.We estimate the structural parameters of the model and use them to quantifythe importance of liquidity constraints on firms' investment. We find thatliquidity constraints matter significantly for the investment decisions of firms. If firms can finance investment by issuing fresh equity, rather than with internal funds or debt, average capital stock is almost 35% higher overa period of 20 years. Transitory shocks to internal funds have a sustained effect on the capital stock. This effect lasts for several periods and ismore persistent for small firms than for large firms. A 10% negative shock to firm fundamentals reduces the capital stock of firms which face liquidityconstraints by almost 8% over a period as opposed to only 3.5% for firms which do not face these constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method to estimate time invariant cyclical DSGE models using the informationprovided by a variety of filters. We treat data filtered with alternative procedures as contaminated proxies of the relevant model-based quantities and estimate structural and non-structuralparameters jointly using a signal extraction approach. We employ simulated data to illustratethe properties of the procedure and compare our conclusions with those obtained when just onefilter is used. We revisit the role of money in the transmission of monetary business cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator iseasy to compute and is consistent and asymptotically normally distributed for fractionallyintegrated (FI) processes with an integration order d strictly greater than -0.75. Therefore, it can be applied to both stationary and non-stationary processes. Deterministic components are also allowed in the DGP. Furthermore, as a by-product, the estimation procedure provides an immediate check on the adequacy of the specified model. This is so because the criterion function, when evaluated at the estimated values, coincides with the Box-Pierce goodness of fit statistic. Empirical applications and Monte-Carlo simulations supporting the analytical results and showing the good performance of the estimator in finite samples are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A national survey designed for estimating a specific population quantity is sometimes used for estimation of this quantity also for a small area, such as a province. Budget constraints do not allow a greater sample size for the small area, and so other means of improving estimation have to be devised. We investigate such methods and assess them by a Monte Carlo study. We explore how a complementary survey can be exploited in small area estimation. We use the context of the Spanish Labour Force Survey (EPA) and the Barometer in Spain for our study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates that, unlike what the conventional wisdom says, measurement error biases in panel data estimation of convergence using OLS with fixed effects are huge, not trivial. It does so by way of the "skipping estimation"': taking data from every m years of the sample (where m is an integer greater than or equal to 2), as opposed to every single year. It is shown that the estimated speed of convergence from the OLS with fixed effects is biased upwards by as much as 7 to 15%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers a job search model where the environment is notstationary along the unemployment spell and where jobs do not lastforever. Under this circumstance, reservation wages can be lower thanwithout separations, as in a stationary environment, but they can alsobe initially higher because of the non-stationarity of the model. Moreover,the time-dependence of reservation wages is stronger than with noseparations. The model is estimated structurally using Spanish data forthe period 1985-1996. The main finding is that, although the decrease inreservation wages is the main determinant of the change in the exit ratefrom unemployment for the first four months, later on the only effect comesfrom the job offer arrival rate, given that acceptance probabilities areroughly equal to one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical {\sc vc} dimension, empirical {\sc vc} entropy, andmargin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Biomass is a fundamental measure for understanding the structure and functioning (e.g. fluxes of energy and nutrients in the food chain) of aquatic ecosystems. We aim to provide predictive models to estimate the biomass of Triplectides egleri Sattler, 1963, in a stream in Central Amazonia, based on body and case dimensions. We used body length, head-capsule width, interocular distance and case length and width to derive biomass estimations. Linear, exponential and power regression models were used to assess the relationship between biomass and body or case dimensions. All regression models used in the biomass estimation of T. egleri were significant. The best fit between biomass and body or case dimensions was obtained using the power model, followed by the exponential and linear models. Body length provided the best estimate of biomass. However, the dimensions of sclerotized structures (interocular distance and head-capsule width) also provided good biomass predictions, and may be useful in estimating biomass of preserved and/or damaged material. Case width was the dimension of the case that provided the best estimate of biomass. Despite the low relation, case width may be useful in studies that require low stress on individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two methods were evaluated for scaling a set of semivariograms into a unified function for kriging estimation of field-measured properties. Scaling is performed using sample variances and sills of individual semivariograms as scale factors. Theoretical developments show that kriging weights are independent of the scaling factor which appears simply as a constant multiplying both sides of the kriging equations. The scaling techniques were applied to four sets of semivariograms representing spatial scales of 30 x 30 m to 600 x 900 km. Experimental semivariograms in each set successfully coalesced into a single curve by variances and sills of individual semivariograms. To evaluate the scaling techniques, kriged estimates derived from scaled semivariogram models were compared with those derived from unscaled models. Differences in kriged estimates of the order of 5% were found for the cases in which the scaling technique was not successful in coalescing the individual semivariograms, which also means that the spatial variability of these properties is different. The proposed scaling techniques enhance interpretation of semivariograms when a variety of measurements are made at the same location. They also reduce computational times for kriging estimations because kriging weights only need to be calculated for one variable. Weights remain unchanged for all other variables in the data set whose semivariograms are scaled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.