996 resultados para Ecological dynamic
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.
Resumo:
This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.
Resumo:
The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Tese de Doutoramento, Biologia (Taxonomia Zoológica), 11 de Outubro de 2013, Universidade dos Açores.
Resumo:
Copyright: © 2014 Aranda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica com especialização em Energia, Climatização e Refrigeração
Resumo:
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Resumo:
We are launching a long-term study to characterize the biodiversity at different elevations in several Azorean Islands. Our aim is to use the Azores as a model archipelago to answer the fundamental question of what generates and maintains the global spatial heterogeneity of diversity in islands and to be able to understand the dynamics of change across time. An extensive, standardized sampling protocol was applied in most of the remnant forest fragments of five Azorean Islands. Fieldwork followed BRYOLAT methodology for the collection of bryophytes, ferns and other vascular plant species. A modified version of the BALA protocol was used for arthropods. A total of 70 plots (10 m x 10 m) are already established in five islands (Flores, Pico, São Jorge, Terceira and São Miguel), all respecting an elevation step of 200 m, resulting in 24 stations examined in Pico, 12 in Terceira, 10 in Flores, 12 in São Miguel and 12 in São Jorge. The first results regarding the vascular plants inventory include 138 vascular species including taxa from Lycopodiophyta (N=2), Pteridophyta (N=27), Pinophyta (N=2) and Magnoliophyta (N=107). In this contribution we also present the main research question for the next six years within the 2020 Horizon.
Resumo:
OBJECTIVE: To assess a new impunity index and variables that have been found to predict variation in homicide rates in other geographical levels as predictive of state-level homicide rates in Brazil. METHODS: This was a cross-sectional ecological study. Data from the mortality information system relating to the 27 Brazilian states for the years 1996 to 2005 were analyzed. The outcome variables were taken to be homicide victim rates in 2005, for the entire population and for men aged 20-29 years. Measurements of economic and social development, economic inequality, demographic structure and life expectancy were analyzed as predictors. An "impunity index", calculated as the total number of homicides between 1996 and 2005 divided by the number of individuals in prison in 2007, was constructed. The data were analyzed by means of simple linear regression and negative binomial regression. RESULTS: In 2005, state-level crude total homicide rates ranged from 11 to 51 per 100,000; for young men, they ranged from 39 to 241. The impunity index ranged from 0.4 to 3.5 and was the most important predictor of this variability. From negative binomial regression, it was estimated that the homicide victim rate among young males increased by 50% for every increase of one point in this ratio. CONCLUSIONS: Classic predictive factors were not associated with homicides in this analysis of state-level variation in Brazil. However, the impunity index indicated that the greater the impunity, the higher the homicide rate.
Resumo:
Higher education institutions, has an active role in the development of a sustainable future and for this reason, it is essential that they became environmentally sustainable institutions, applying methods such as the Ecological Footprint analysis. This study intent is to strengthen the potential of the ecological footprint as an indicator of the sustainability of students of Lisbon School of Health Technology, and identify the relationship between the ecological footprint and the different socio-demographic variables.
Resumo:
Understanding the determinants of international performance, and in particular, export performance is key for the success of international companies. Research in this area focuses mainly on how resources and capabilities allow companies to gain competitive advantage and superior performance in external markets. Building on the Resource-Based View (RBV) and the Dynamic Capabilities Approach (DCA), this study aims at analysing the effect of intangible resources and capabilities on export performance. Specifically, this study focuses on the proposition that entrepreneurial orientation potentiates the attraction of intangible resources, namely relational and informational resources. Moreover, we propose that these resources impact export performance both directly and indirectly through dynamic capabilities.