932 resultados para ES-SAGD. Heavy oil. Recovery factor. Reservoir modeling and simulation
Resumo:
Variables measured during static and dynamic pupillometry were factor-analyzed. Following factors were obtained regardless whether investigations were carried out in normals or in psychiatric patients: A static factor, a dynamic factor, a stimulus-specific factor and a restitution-dependent factor. Evaluation of reliability in normals demonstrated a high reliability for the static variables of pupillometry.
Resumo:
This paper presents a thermal modeling for power management of a new three-dimensional (3-D) thinned dies stacking process. Besides the high concentration of power dissipating sources, which is the direct consequence of the very interesting integration efficiency increase, this new ultra-compact packaging technology can suffer of the poor thermal conductivity (about 700 times smaller than silicon one) of the benzocyclobutene (BCB) used as both adhesive and planarization layers in each level of the stack. Thermal simulation was conducted using three-dimensional (3-D) FEM tool to analyze the specific behaviors in such stacked structure and to optimize the design rules. This study first describes the heat transfer limitation through the vertical path by examining particularly the case of the high dissipating sources under small area. First results of characterization in transient regime by means of dedicated test device mounted in single level structure are presented. For the design optimization, the thermal draining capabilities of a copper grid or full copper plate embedded in the intermediate layer of stacked structure are evaluated as a function of the technological parameters and the physical properties. It is shown an interest for the transverse heat extraction under the buffer devices dissipating most the power and generally localized in the peripheral zone, and for the temperature uniformization, by heat spreading mechanism, in the localized regions where the attachment of the thin die is altered. Finally, all conclusions of this analysis are used for the quantitative projections of the thermal performance of a first demonstrator based on a three-levels stacking structure for space application.
Resumo:
This paper presents the first quantitative study of the Early Jurassic recovery of ammonoids after the end-Triassic mass extinction based on detailed U-Pb ID-TIMS (isotope dilution thermal ionization mass spectrometry) geochronology from ash bed zircons placed within a clear phylogenetical and biochronological framework at the subzonal and species level. This study was triggered by the discovery of a rich Peruvian succession of ammonites, deposited concomitantly with an unusually large number of ash beds. Two major phases of rediversification are observed during the Psiloceras spelae and Angulaticeras zones that correspond to positive peaks in the delta C-13(org) curve, providing a possible link between biodiversity and the global carbon cycle. In the case of the post-extinction recovery, the development of the earliest Hettangian ammonites occurs within the genus Psiloceras, which begins with the occurrence of P. spelae and then explodes into worldwide development of smooth psiloceratids of the Psiloceras planorbis group s.l. This rapid biodiversification likely occurred less than 100 ka after the end-Triassic crisis; the genus Psiloceras occupied all the possible ecological niches worldwide, from the Pacific deep waters to the NW European shallow deposits and also in some rare Tethyan occurrences like at Germig in Tibet. This global dispersion allowed the differentiation of the group in several major phyla, the Schlotheimiidae, Discamphiceratinae, Arietitidae and Lytocerataceae, which were the roots of all other Jurassic and Cretaceous ammonites. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
INTRODUCTION: The cell surface endopeptidase CD10 (neutral endopeptidase) and nuclear factor-κB (NF-κB) have been independently associated with prostate cancer (PC) progression. We investigated the correlations between these two factors and their prognostic relevance in terms of biochemical (prostate-specific antigen, PSA) relapse after radical prostatectomy (RP) for localized PC. PATIENTS AND METHODS: The immunohistochemical expression of CD10 and NF-κB in samples from 70 patients who underwent RP for localized PC was correlated with the preoperative PSA level, Gleason score, pathological stage and time to PSA failure. RESULTS: CD10 expression was inversely associated with NF-κB expression (p < 0.001), stage (p = 0.03) and grade (p = 0.003), whereas NF-κB was directly related with stage (p = 0.006) and grade (p = 0.002). The median time to PSA failure was 56 months. CD10 and NF-κB were directly (p < 0.001) and inversely (p < 0.001) correlated with biochemical recurrence-free survival, respectively. CD10 expression (p = 0.022) and stage (p = 0.018) were independently associated with time to biochemical recurrence. CONCLUSION: Low CD10 expression is an adverse prognostic factor for biochemical relapse after RP in localized PC, which is also associated with high NF-κB expression. Decreased CD10 expression which would lead to increased neuropeptide signaling and NF-κB activity may be present in a subset of early PCs.
Resumo:
A novel member of the tumor necrosis factor (TNF) receptor family, designated TRAMP, has been identified. The structural organization of the 393 amino acid long human TRAMP is most homologous to TNF receptor 1. TRAMP is abundantly expressed on thymocytes and lymphocytes. Its extracellular domain is composed of four cysteine-rich domains, and the cytoplasmic region contains a death domain known to signal apoptosis. Overexpression of TRAMP leads to two major responses, NF-kappaB activation and apoptosis. TRAMP-induced cell death is inhibited by an inhibitor of ICE-like proteases, but not by Bcl-2. In addition, TRAMP does not appear to interact with any of the known apoptosis-inducing ligands of the TNF family.
Resumo:
Hypoxia is an essential component of tumor microenvironment. In this study, we investigated the influence of hypoxia (1% PO(2)) on CTL-mediated tumor cell lysis. We demonstrate that exposure of target tumor cells to hypoxia has an inhibitory effect on the CTL clone (Heu171)-induced autologous target cell lysis. Such inhibition correlates with hypoxia-inducible factor-1alpha (HIF-1alpha) induction but is not associated with an alteration of CTL reactivity as revealed by granzyme B polarization or morphological change. Western blot analysis indicates that although hypoxia had no effect on p53 accumulation, it induced the phosphorylation of STAT3 in tumor cells by a mechanism at least in part involving vascular endothelial growth factor secretion. We additionally show that a simultaneous nuclear translocation of HIF-1alpha and phospho-STAT3 was observed. Interestingly, gene silencing of STAT3 by small interfering RNA resulted in HIF-1alpha inhibition and a significant restoration of target cell susceptibility to CTL-induced killing under hypoxic conditions by a mechanism involving at least in part down-regulation of AKT phosphorylation. Moreover, knockdown of HIF-1alpha resulted in the restoration of target cell lysis under hypoxic conditions. This was further supported by DNA microarray analysis where STAT3 inhibition resulted in a partly reversal of the hypoxia-induced gene expression profile. The present study demonstrates that the concomitant hypoxic induction of phospho-STAT3 and HIF-1alpha are functionally linked to the alteration of non-small cell lung carcinoma target susceptibility to CTL-mediated killing. Considering the eminent functions of STAT3 and HIF-1alpha in the tumor microenvironment, their targeting may represent novel strategies for immunotherapeutic intervention.
Resumo:
Background: The anti-angiogenic drug, bevacizumab (Bv), is currently used in the treatment of different malignancies including breast cancer. Many angiogenesis-associated molecules are found in the circulation of cancer patients. Until now, there are no prognostic or predictive factors identified in breast cancer patients treated with Bv. We present here the first results of the prospective monitoring of 6 angiogenesis-related molecules in the peripheral blood of breast cancer patients treated with a combination of Bv and PLD in the phase II trial, SAKK 24/06. Methods: Patients were treated with PLD (20 mg/m2) and Bv (10 mg/kg) on days 1 and 15 of each 4-week cycle for a maximum of 6 cycles, followed by Bv monotherapy maintenance (10 mg/m2 q2 weeks) until progression or severe toxicity. Plasma and serum samples were collected at baseline, after 2 months of therapy, then every 3 months and at treatment discontinuation. Enzyme-linked immunosorbent assays (Quantikine, R&D Systems and Reliatech) were used to measure the expression levels of human vascular endothelial growth factor (hVEGF), placental growth factor (hPlGF), matrix metalloproteinase 9 (hMMP9) and soluble VEGF receptors hsVEGFR-1, hsVEGFR-2 and hsVEGFR-3. The log-transformed data (to reduce the skewness) for each marker was analyzed using an analysis of variance (ANOVA) model to determine if there was a difference between the mean of the subgroups of interest (where α = 0.05). The untransformed data was also analyzed in the same manner as a "sensitivity" check. Results: 132 blood samples were collected in 41 out of 43 enrolled patients. Baseline levels of the molecules were compared to disease status according to RECIST. There was a statistically significant difference in the mean of the log-transformed levels of hMMP9 between responders [CR+PR] versus the mean in patients with PD (p-value=0.0004, log fold change=0.7536), and between patients with disease control [CR+PR+SD] and those with PD (p-value=<0.0001, log fold change=0.81559), with the log-transformed level of hMMP9 being higher for the responder group. The mean of the log-transformed levels of hsVEGFR-1 was statistically significantly different between patients with disease control [CR+PR+SD] and those with PD (p-value=0.0068, log fold change=-0.6089), where the log-transformed level of hsVEGFR-1 was lower for the responder group. The log-transformed level of hMMP9 at baseline was identified as a significant prognostic factor in terms of progression free survival (PFS): p-value=0.0417, hazard ratio (HR)=0.574 with a corresponding 95% confidence interval (0.336 - 0.979)). No strong correlation was shown either between the log-transformed levels of hsVEGF, hPlGF, hsVEGFR-2 or hsVEGFR-3 and clinical response or the occurrence of severe toxicity, or between the levels of the different molecules. Conclusions: Our results suggest that baseline plasma level of the matrix metalloproteinase, hMMP9, could predict tumor response and PFS in patients treated with a combination of Bv and PLD. These data justify further investigation in breast cancer patients treated with anti-angiogenic therapy.
Resumo:
The genomic era has revealed that the large repertoire of observed animal phenotypes is dependent on changes in the expression patterns of a finite number of genes, which are mediated by a plethora of transcription factors (TFs) with distinct specificities. The dimerization of TFs can also increase the complexity of a genetic regulatory network manifold, by combining a small number of monomers into dimers with distinct functions. Therefore, studying the evolution of these dimerizing TFs is vital for understanding how complexity increased during animal evolution. We focus on the second largest family of dimerizing TFs, the basic-region leucine zipper (bZIP), and infer when it expanded and how bZIP DNA-binding and dimerization functions evolved during the major phases of animal evolution. Specifically, we classify the metazoan bZIPs into 19 families and confirm the ancient nature of at least 13 of these families, predating the split of the cnidaria. We observe fixation of a core dimerization network in the last common ancestor of protostomes-deuterostomes. This was followed by an expansion of the number of proteins in the network, but no major dimerization changes in interaction partners, during the emergence of vertebrates. In conclusion, the bZIPs are an excellent model with which to understand how DNA binding and protein interactions of TFs evolved during animal evolution.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.
Resumo:
This study was undertaken in the framework of a larger European project dealing with the characterization of fat co- and by-products from the food chain, available for feed uses. In this study, we compare the effects, on the fatty acid (FA) and tocol composition of chicken and rabbit tissues, of the addition to feeds of a palm fatty acid distillate, very low in trans fatty acids (TFA), and two levels of the corresponding hydrogenated by-product, containing intermediate and high levels of TFA. Thus, the experimental design included three treatments, formulated for each species, containing the three levels of TFA defined above. Obviously, due to the use of hydrogenated fats, the levels of saturated fatty acids (SFA) show clear differences between the three dietary treatments. The results show that diets high in TFA (76 g/kg fat) compared with those low in TFA (4.4 g/kg fat) led to a lower content of tocopherols and tocotrienols in tissues, although these differences were not always statistically significant, and show a different pattern for rabbit and chicken. The TFA content in meat, liver and plasma increased from low-to-high TFA feeds in both chicken and rabbit. However, the transfer ratios from feed were not proportional to the TFA levels in feeds, reflecting certain differences according to the animal species. Moreover, feeds containing fats higher in TFA induced significant changes in tissue SFA, monounsaturated fatty acids and polyunsaturated fatty acids composition, but different patterns can be described for chicken and rabbit and for each type of tissue.
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational, and research tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system. In this context the research developed includes the visual information as a meaningful source that allows detecting the obstacle position coordinates as well as planning the free obstacle trajectory that should be reached by the robot