979 resultados para EQUATORIAL WAVES
Resumo:
Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun's polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.
Resumo:
Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 mu m thick metal foil, 200 mM CaCl(2), 1 ng/mu l plasmid DNA concentration, and 1 x 10(9) cell density. The highest transformation efficiency achieved (1 x 10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1 x 10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
During lightning strike to a tall grounded object (TGO), reflected current waves from TGO are transmitted on to the channel. With regard to these transmitted waves, there seems to be some uncertainties like: 1) will they get reflected at the main wavefront; and 2) if so, what would be their final status. This study makes an attempt to address these issues considering a special case of strike to a TGO involving equal channel core and TGO radii. A macroscopic physical model for the lightning return stroke is adopted for the intended work. Analysis showed that the waves transmitted on to the channel merges with the main wavefront without any sign of reflection. Investigation revealed that: 1) the nonlinear spatio-temporal resistance profile of the channel at the wavefront is mainly responsible for the same; and 2) the distributed source provides additional support. The earlier findings are not limited to the special case of TGO considered. In spite of considering equal TGO and channel core radii, salient features of the model predicted remote electromagnetic fields agree well with the measured data reported in literature.
Resumo:
The analysis of propagation of a normal shock wave in CO2‐N2‐He or H2 or H2O system seeded with solid particles is presented. The variation of translational and vibrational temperatures of gas phase and the particle temperatures in the relaxation zone behind the shock front are given in graphical form. These results show that the peak value of population inversion and the width of the inversion zone are highest for He catalyst and lowest for H2O catalyst.
Resumo:
By using the perturbation technique, a Kortewege-de-Vries (K-dV) equation for a multicomponent plasma with negative ions and isothermal electrons has been derived. We have discussed the stationary solutions of K-dV equation and it has shown that in the presece of multiple ions, the amplitude of solitons exhibits interesting behaviour, especiallY when the negative ions are present.
Resumo:
An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Scattering of water waves by a sphere in a two-layer fluid, where the upper layer has an ice-cover modelled as an elastic plate of very small thickness, while the lower one has a rigid horizontal bottom surface, is investigated within the framework of linearized water wave theory. The effects of surface tension at the surface of separation is neglected. There exist two modes of time-harmonic waves - the one with lower wave number propagating along the ice-cover and the one with higher wave number along the interface. Method of multipole expansions is used to find the particular solution for the problem of wave scattering by a submerged sphere placed in either of the layers. The exciting forces for vertical and horizontal directions are derived and plotted against different values of the wave number for different submersion depths of the sphere and flexural rigidity of the ice-cover. When the flexural rigidity and the density of the ice-cover are taken to be zero, the numerical results for the exciting forces for the problem with free surface are recovered as particular cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
During lightning strike to a tall grounded object (TGO), reflected current waves from TGO are transmitted on to the channel. With regard to these transmitted waves, there seems to be some uncertainties like: 1) will they get reflected at the main wavefront; and 2) if so, what would be their final status. This study makes an attempt to address these issues considering a special case of strike to a TGO involving equal channel core and TGO radii. A macroscopic physical model for the lightning return stroke is adopted for the intended work. Analysis showed that the waves transmitted on to the channel merges with the main wavefront without any sign of reflection. Investigation revealed that: 1) the nonlinear spatio-temporal resistance profile of the channel at the wavefront is mainly responsible for the same; and 2) the distributed source provides additional support. The earlier findings are not limited to the special case of TGO considered. In spite of considering equal TGO and channel core radii, salient features of the model predicted remote electromagnetic fields agree well with the measured data reported in literature.
Resumo:
An energy-momentum conserving time integrator coupled with an automatic finite element algorithm is developed to study longitudinal wave propagation in hyperelastic layers. The Murnaghan strain energy function is used to model material nonlinearity and full geometric nonlinearity is considered. An automatic assembly algorithm using algorithmic differentiation is developed within a discrete Hamiltonian framework to directly formulate the finite element matrices without recourse to an explicit derivation of their algebraic form or the governing equations. The algorithm is illustrated with applications to longitudinal wave propagation in a thin hyperelastic layer modeled with a two-mode kinematic model. Solution obtained using a standard nonlinear finite element model with Newmark time stepping is provided for comparison. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study the planetary-scale wave features using concurrent observations of mesospheric wind and temperature, ionospheric h'F, and tropospheric wind from Tirunelveli, Gadanki, and Kolhapur, all located in the Indian low latitudes, made during February 2009. Our investigations reveal that 3 to 5 day periodicity, characterized as ultrafast Kelvin (UFK) waves, was persistent throughout the atmosphere during this period. These waves show clear signatures of upward wave propagation from troposphere to the upper mesosphere, linking the ionosphere through a clear correlation between mesospheric winds and h'F variations. We also note that the amplitude of this wave decreased as we moved away from the equator. These results are the first of their kind from Indian sector, portraying the vertical as well as latitudinal characteristics of the 3 to 5 day UFK waves simultaneously from the troposphere to the ionosphere.
Resumo:
Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (''arithmetic random waves''). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.
Resumo:
Intraseasonal time-scales play an important role in tropical variability. Two modes that contribute significantly to tropical intraseasonal variability (ISV) are the eastward-propagating MaddenJulian Oscillation (MJO), and westward-moving moist equatorial Rossby waves. This note reports on a correspondence between the longitudinal gradient of mean tropical precipitable water (PW), and the geographical regions of genesis, and convective activity, of both these large-scale tropical systems. Our finding is based on an analysis of PW from the MERRA reanalysis product. The data indicate that the mean tropical PW has a dominant wavenumber two (three) structure in longitude in the Northern (Southern) Hemisphere. Departures from a longitudinally homogeneous state are attributed to the influence of subtropical anticyclones, and are accentuated by monsoonal regions of both hemispheres. This mean structure results in a sharply localized longitudinal gradient of PW. Remarkably, regions with positive gradients (such as the Northern and Southern Hemisphere western Indian Ocean), i.e. they have larger PW to the east, are the very zones that are implicated in the formation, and show high levels of convective activity, of the eastward-moving MJO. On the other hand, regions with negative gradients (such as the Southern Hemisphere central Pacific) are the very regions where genesis, and maxima in variance, of westward-moving moist equatorial Rossby waves are known to occur. Apart from providing a first-order longitudinal footprint of the convective phase of these systems, this correspondence reinforces the role of the mean climatic state in tropical ISV. Copyright (c) 2012 Royal Meteorological Society
Resumo:
Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.
Resumo:
Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be J and the average TNT equivalent was found to be . The repeatability in generating these micro-blast waves using the Nonel tube was very good and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.