422 resultados para ENSO
Resumo:
The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the inter-decadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atmosphere's response to the observed Indian Ocean-western Pacific (IWP) warming. Coordinated by a European Union's Sixth Framework Programme, Understanding the Dynamics of the Coupled Climate System (DYNAMITE), five AGCMs were forced by identical idealized sea surface temperature patterns representative of the IWP warming and cooling. The results of these numerical experiments suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in the equatorial Indian Ocean/ Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH. The SST changes in IWP influences the Walker circulation, with a subsequent reduction of convections in the tropical central and eastern Pacific, which then forces an ENSO/Gill-type response that modulates the WPSH. The monsoon diabatic heating mechanism proposed by Rodwell and Hoskins plays a secondary reinforcing role in the westward extension of WPSH. The low-level equatorial flank of WPSH is interpreted as a Kelvin response to monsoon condensational heating, while the intensified poleward flow along the western flank of WPSH is in accord with Sverdrup vorticity balance. The IWP warming has led to an expansion of the South Asian high in the upper troposphere, as seen in the reanalysis.
Resumo:
Anomalous heavy snow during winter or spring has long been regarded as a possible precursor of deficient Indian monsoon rainfall during the subsequent summer. However previous work in this field is inconclusive, in terms of the mechanism that communicates snow anomalies to the monsoon summer, and even the region from which snow has the most impact. In this study we explore these issues in coupled and atmosphere-only versions of the Hadley Centre model. A 1050-year control integration of the HadCM3 coupled model, which well represents the seasonal cycle of snow cover over the Eurasian continent, is analysed and shows evidence for weakened monsoons being preceded by strong snow forcing (in the absence of ENSO) over either the Himalaya/Tibetan Plateau or north/west Eurasia regions. However, empirical orthogonal function (EOF) analysis of springtime interannual variability in snow depth shows the leading mode to have opposite signs between these two regions, suggesting that competing mechanisms may be possible. To determine the dominant region, ensemble integrations are carried out using HadAM3, the atmospheric component of HadCM3, and a variety of anomalous snow forcing initial conditions obtained from the control integration of the coupled model. Forcings are applied during spring in separate experiments over the Himalaya/Tibetan Plateau and north/west Eurasia regions, in conjunction with climatological SSTs in order to avoid the direct effects of ENSO. With the aid of idealized forcing conditions in sensitivity tests, we demonstrate that forcing from the Himalaya region is dominant in this model via a Blanford-type mechanism involving reduced surface sensible heat and longwave fluxes, reduced heating of the troposphere over the Tibetan Plateau and consequently a reduced meridional tropospheric temperature gradient which weakens the monsoon during early summer. Snow albedo is shown to be key to the mechanism, explaining around 50% of the perturbation in sensible heating over the Tibetan Plateau, and accounting for the majority of cooling through the troposphere.
Resumo:
The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Nino-Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Nino, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Nino state. The presence of these two triggers-the first independent of ENSO and the second phase locking the IOZM to El Nino-allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Nino.
Resumo:
The El Niño–Southern Oscillation (ENSO) is a naturally occurring fluctuation that originates in the tropical Pacific region and affects ecosystems, agriculture, freshwater supplies, hurricanes and other severe weather events worldwide. Under the influence of global warming, the mean climate of the Pacific region will probably undergo significant changes. The tropical easterly trade winds are expected to weaken; surface ocean temperatures are expected to warm fastest near the equator and more slowly farther away; the equatorial thermocline that marks the transition between the wind-mixed upper ocean and deeper layers is expected to shoal; and the temperature gradients across the thermocline are expected to become steeper. Year-to-year ENSO variability is controlled by a delicate balance of amplifying and damping feedbacks, and one or more of the physical processes that are responsible for determining the characteristics of ENSO will probably be modified by climate change. Therefore, despite considerable progress in our understanding of the impact of climate change on many of the processes that contribute to El Niño variability, it is not yet possible to say whether ENSO activity will be enhanced or damped, or if the frequency of events will change.
Resumo:
This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.
Resumo:
The climatology of the OPA/ARPEGE-T21 coupled general circulation model (GCM) is presented. The atmosphere GCM has a T21 spectral truncation and the ocean GCM has a 2°×1.5° average resolution. A 50-year climatic simulation is performed using the OASIS coupler, without flux correction techniques. The mean state and seasonal cycle for the last 10 years of the experiment are described and compared to the corresponding uncoupled experiments and to climatology when available. The model reasonably simulates most of the basic features of the observed climate. Energy budgets and transports in the coupled system, of importance for climate studies, are assessed and prove to be within available estimates. After an adjustment phase of a few years, the model stabilizes around a mean state where the tropics are warm and resemble a permanent ENSO, the Southern Ocean warms and almost no sea-ice is left in the Southern Hemisphere. The atmospheric circulation becomes more zonal and symmetric with respect to the equator. Once those systematic errors are established, the model shows little secular drift, the small remaining trends being mainly associated to horizontal physics in the ocean GCM. The stability of the model is shown to be related to qualities already present in the uncoupled GCMs used, namely a balanced radiation budget at the top-of-the-atmosphere and a tight ocean thermocline.
Resumo:
Northern hemisphere snow water equivalent (SWE) distribution from remote sensing (SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model are compared. Large differences are seen in the February climatologies, particularly over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this region, while comparison with independent runoff estimates suggest that HadCM3 is underestimating SWE. Treatment of snow grain size and vegetation parameterizations are concerns with the remotely sensed data. For this reason, ERA40 is used as `truth' for the following experiments. Despite the climatology differences, HadCM3 is able to reproduce the distribution of ERA40 SWE anomalies when assimilating ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean temperature and salinity. However when forecasts are released from these assimilated initial states, the SWE anomaly distribution diverges rapidly from that of ERA40. No predictability is seen from one season to another. Strong links between European SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts of this index by the assimilation scheme are poor. Longer term relationships between SWE and the NAO, and SWE and the El Ni\~no-Southern Oscillation (ENSO) are also investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the Himalayas and North America, while the NAO affects SWE in North America and Europe. While significant connections with the NAO index were only present in DJF (and to an extent SON), the link between ENSO and February SWE distribution was seen to exist from the previous JJA ENSO index onwards. This represents a long lead time for SWE prediction for hydrological applications such as flood and wildfire forecasting. Further work is required to develop reliable large scale observation-based SWE datasets with which to test these model-derived connections.
Resumo:
The multidecadal variability of El Niño–Southern Oscillation (ENSO)–South Asian monsoon relationship is elucidated in a 1000 year control simulation of a coupled general circulation model. The results indicate that the Atlantic Multidecadal Oscillation (AMO), resulting from the natural fluctuation of the Atlantic Meridional Overturning Circulation (AMOC), plays an important role in modulating the multidecadal variation of the ENSO-monsoon relationship. The sea surface temperature anomalies associated with the AMO induce not only significant climate impact in the Atlantic but also the coupled feedbacks in the tropical Pacific regions. The remote responses in the Pacific Ocean to a positive phase of the AMO which is resulted from enhanced AMOC in the model simulation and are characterized by statistically significant warming in the North Pacific and in the western tropical Pacific, a relaxation of tropical easterly trades in the central and eastern tropical Pacific, and a deeper thermocline in the eastern tropical Pacific. These changes in mean states lead to a reduction of ENSO variability and therefore a weakening of the ENSO-monsoon relationship. This study suggests a nonlocal mechanism for the low-frequency fluctuation of the ENSO-monsoon relationship, although the AMO explains only a fraction of the ENSO–South Asian monsoon variation on decadal-multidecadal timescale. Given the multidecadal variation of the AMOC and therefore of the AMO exhibit decadal predictability, this study highlights the possibility that a part of the change of climate variability in the Pacific Ocean and its teleconnection may be predictable.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
The relationship between tropical convection, surface fluxes, and sea surface temperature (SST) on intraseasonal timescales has been examined as part of an investigation of the possibility that the intraseasonal oscillation is a coupled atmosphere–ocean phenomenon. The unique feature of this study is that 15 yr of data and the whole region from the Indian Ocean to the Pacific Ocean have been analyzed using lag-correlation analysis and compositing techniques. A coherent relationship between convection, surface fluxes, and SST has been found on intraseasonal timescales in the Indian Ocean, Maritime Continent, and west Pacific regions of the Tropics. Prior to the maximum in convection, there are positive shortwave and latent heat flux anomalies into the surface, followed by warm SST anomalies about 10 days before the convective maximum. Coincident with the convective maximum, there is a minimum in the shortwave flux, followed by a cooling due to increased evaporation associated with enhanced westerly wind stress, leading to negative SST anomalies about 10 days after the convection. The relationships are robust from year to year, including both phases of the El Niño–Southern Oscillation (ENSO) although the eastward extent of the region over which the relationship holds varies with the phase of ENSO, consistent with the variations in the eastward extent of the warm pool and westerly winds. The spatial scale of the anomalies is about 60° longitude, consistent with the scale of the intraseasonal oscillation. The spatial and temporal characteristics of the surface flux and SST perturbations are consistent with the surface flux variations forcing the ocean, and the magnitudes of the anomalies are consistent with mixed-layer depths appropriate to the Indian Ocean and west Pacific
Resumo:
The predictability of ocean and climate variables is investigated, using a perfect model-based case study approach that recognises that predictability is dependent on the initial climate state. In line with previous studies, large scale ocean variables, show predictability for several years or more; by contrast, the predictability of climate variables is generally limited to, 2 years at most. That predictability shows high sensitivity to the initial state is demonstrated by predictable climate signals, arising in different regions, variables and seasons for different initial conditions. The predictability of climate variables, in the second year is of particular interest, because this is beyond the timescale that is usually considered to be the limit, of seasonal predictability. For different initial conditions, second year predictability is found in: temperatures in southeastern, North America (winter) and western Europe (winter and summer), and precipitation in India (summer monsoon) and in the tropical, South Atlantic. Second year predictability arises either from persistence of large-scale sea surface temperature (SST) and, related ocean heat content anomalies, particularly in regions such as the North Atlantic and Southern Ocean, or from mechanisms, that involve El Nino Southern Oscillation (ENSO) dynamics.
Resumo:
Recent literature has described a “transition zone” between the average top of deep convection in the Tropics and the stratosphere. Here transport across this zone is investigated using an offline trajectory model. Particles were advected by the resolved winds from the European Centre for Medium-Range Weather Forecasts reanalyses. For each boreal winter clusters of particles were released in the upper troposphere over the four main regions of tropical deep convection (Indonesia, central Pacific, South America, and Africa). Most particles remain in the troposphere, descending on average for every cluster. The horizontal components of 5-day trajectories are strongly influenced by the El Niño–Southern Oscillation (ENSO), but the Lagrangian average descent does not have a clear ENSO signature. Tropopause crossing locations are first identified by recording events when trajectories from the same release regions cross the World Meteorological Organization lapse rate tropopause. Most crossing events occur 5–15 days after release, and 30-day trajectories are sufficiently long to estimate crossing number densities. In a further two experiments slight excursions across the lapse rate tropopause are differentiated from the drift deeper into the stratosphere by defining the “tropopause zone” as a layer bounded by the average potential temperature of the lapse rate tropopause and the profile temperature minimum. Transport upward across this zone is studied using forward trajectories released from the lower bound and back trajectories arriving at the upper bound. Histograms of particle potential temperature (θ) show marked differences between the transition zone, where there is a slow spread in θ values about a peak that shifts slowly upward, and the troposphere below 350 K. There forward trajectories experience slow radiative cooling interspersed with bursts of convective heating resulting in a well-mixed distribution. In contrast θ histograms for back trajectories arriving in the stratosphere have two distinct peaks just above 300 and 350 K, indicating the sharp change from rapid convective heating in the well-mixed troposphere to slow ascent in the transition zone. Although trajectories slowly cross the tropopause zone throughout the Tropics, all three experiments show that most trajectories reaching the stratosphere from the lower troposphere within 30 days do so over the west Pacific warm pool. This preferred location moves about 30°–50° farther east in an El Niño year (1982/83) and about 30° farther west in a La Niña year (1988/89). These results could have important implications for upper-troposphere–lower-stratosphere pollution and chemistry studies.
Resumo:
The structure and evolution of the Arctic stratospheric polar vortex is assessed during opposing phases of, primarily, the El Niño–Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO), but the 11 year solar cycle and winters following large volcanic eruptions are also examined. The analysis is performed by taking 2-D moments of vortex potential vorticity (PV) fields which allow the area and centroid of the vortex to be calculated throughout the ERA-40 reanalysis data set (1958–2002). Composites of these diagnostics for the different phases of the natural forcings are then considered. Statistically significant results are found regarding the structure and evolution of the vortex during, in particular, the ENSO and QBO phases. When compared with the more traditional zonal mean zonal wind diagnostic at 60°N, the moment-based diagnostics are far more robust and contain more information regarding the state of the vortex. The study details, for the first time, a comprehensive sequence of events which map the evolution of the vortex during each of the forcings throughout an extended winter period.
Resumo:
Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during 'El Niño' conditions, and weakening during 'La Niña' conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an 'El Niño'.