963 resultados para Dynamic behavior


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research sought to understand the temporal and spatial distribution of rainfall and its effect on water dynamics on a regional basis, taking into account the pace of climate paradigm. The study area covers the entire river basin of the Itajai and its surroundings understood, roughly, between parallels 26° and 28° south latitude and 48° and 50° 30' west longitude, place of constant heavy rains and floods. In this region, pluviometric and fluviometric data were obtained, the variables of rainfall and water flow, which were compiled and analyzed using spreadsheets in order to get the series with more homogeneous data as possible for good analysis, the period between 1953 and 1982. This historical period has passed in principle by an analysis which sought to highlight the variability and distribution of rainfall and water flow in the basin-level annual, techniques which were used that allowed the choice of standard year representative (rainy, dry , usual) series. These obtained years (1957, 1968 and 1971, respectively) underwent a detailed analysis on the monthly level, providing good interpretation of the dynamic behavior of rain associated with dynamic water flow for these representative years

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, it was studied the thermal and fluid dynamic behavior from theorical and experimental point of view of a blast furnace tuyere. The tuyere is responsible for the hot air insuflation into the blast furnace. The parameter used in the comparison was the difference between the cooling water inlet and outlet temperatures. There were used forced convection correlations inside circular sections with adequations for non circular sections. Based on operations dates of flux and thermal loads it was possible to model numerically the tuyere, and, since it was obtained the wall temperatures, estimate the conduction and convection resistances and the heat flux through the walls in contact with the water. The total heat fluxes from wall to water were applied to the energy conservation equation where could be estimated the theorical temperature variation. Compared to the real value, the theorical value presented a difference of 0,2 °C. Considering that the boundary conditions around the tuyere are transitories and that your channels have some rugosity irregularities we can consider the estimation method for cooling system coherent with the real operational parameters

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, research on energy harvesting has increased substantially. Many researchers have concentrated their efforts to find the best configuration for these systems and to optimize their output power. In the process of energy harvesting, the electric energy is obtained by converting mechanics energy created by an environment vibration source by a transducer, for example, a thin piezoceramic film. That vibration source is, for example, a beam suffering some mechanic force able to generate a vibration in it, an oscillating beam is the best properly used example. Different mechanisms of electromechanical coupling have been developed to harvesting devices, and a particular interest has been given to the use of models that transform the mechanical vibration into electrical current using a piezoelectric element. In this paper we propose a model to energy harvesting from vibrations, from an oscillating beam, including non-linearities in the piezoelectric coupling and a non-ideal excitation in the material. From this model, it was developed a system to obtain some results about the harvested power by the material. It was demonstrated that the power captured was influenced by the effect of the nonlinearities of the piezoelectric coupling, modifying the system dynamic behavior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An excitation force that is not influenced by the system's states is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist. This manifestation of the law of conversation of energy is known as Sommerfeld Effect. In the case of obtaining a mathematical model for such system, additional equations are usually necessary to describe the vibration sources and their coupling with the mechanical system. In this work, a cantilever beam and a non-ideal electric DC motor that is fixed to the beam free end is analyzed. The motor has an unbalanced mass that provides excitation to the system proportional to the current applied to the motor. During the motor's coast up operation, as the excitation frequency gets closer to the beam first natural frequency and if the drive power increases further, the DC motor speed remains constant until it suddenly jumps to a much higher value (simultaneously the vibration amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in Sommerfeld effect. Numerical simulations and experimental tests are used to help insight this dynamic behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of the analysis of dynamic behavior of flashover phenomenon on the high voltage-polluted insulators are presented. These results were taken from a mathematical and an experimental model that introduce the variable thickness influence of the layer pollution deposited on the high-voltage insulator surface. Analysis of the flashover was done by way of introducing a variation in the thickness of the channel of Obenaus' model, simulating a layer pollution of variable thickness. The objective was to obtain a better reproduction of the real layer pollution deposited on the insulator that works in the polluted regions. Two types of thickness variations were used: a sudden variation, using a step; and a soft variation, using a ramp; that were put along the way of the discharge. Comparison between the mathematical and experimental models showed that introduction of a ramp makes Obenaus' model more efficient in analyzing behavior of flashover phenomenon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focus to apply, to discuss and to propose the Maximum Harvesting Method improvement, regarding the method application, for household rainwater harvesting systems. For this purpose, the rainwater was considered to supply the flush toilet demand in a household for 3, 4, and 5 inhabitants. The 80, 120 and 200m2 catchments areas and the 0, 1, 2 and 4mm first flushes discharges were also considered. Further, the improvement suggestions for cistern volume calculus and volume/level dynamics variation in a period were presented and the results were compared applying the Simulation Analyses Method. The results indicate that the Maximum Harvesting Method could be applied and that the improvement proposal can be used to determinate the cistern volume as well to analyze the dynamic behavior of volume/level, constituting by itself a single tool to assist rainwater harvesting systems designers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical and complex modal analysis. The mathematical modeling was based on the theory of Euler-Bernoulli beam. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using Matlab ®, and numerical simulations were performed to validate this model.