801 resultados para Drud Delivery
Resumo:
Drug-nanoparticle conjugates: The anticancer drug camptothecin (CPT) was covalently linked at the surface of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) via a linker, allowing drug release by cellular esterases. Nanoparticles were hierarchically built to achieve magnetically-enhanced drug delivery to human cancer cells and antiproliferative activity.The linking of therapeutic drugs to ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) allowing intracellular release of the active drug via cell-specific mechanisms would achieve tumor-selective magnetically-enhanced drug delivery. To validate this concept, we covalently attached the anticancer drug camptothecin (CPT) to biocompatible USPIOs (iron oxide core, 9-10 nm; hydrodynamic diameter, 52 nm) coated with polyvinylalcohol/polyvinylamine (PVA/aminoPVA). A bifunctional, end-differentiated dicarboxylic acid linker allowed the attachment of CPT to the aminoPVA as a biologically labile ester substrate for cellular esterases at one end, and as an amide at the other end. These CPT-USPIO conjugates exhibited antiproliferative activity in vitro against human melanoma cells. The intracellular localization of CPT-USPIOs was confirmed by transmission electron microscopy (iron oxide core), suggesting localization in lipid vesicles, and by fluorescence microscopy (CPT). An external static magnetic field applied during exposure increased melanoma cell uptake of the CPT-USPIOs.
Resumo:
The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis(®)) and collagen foams (TissueFleece(®)). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
The key goals in winter maintenance operations are preserving the safety and mobility of the traveling public. To do this, it is in general necessary to try to increase the friction of the road surface above the typical friction levels found on a snow or ice covered roadway. Because of prior work on the performance of abrasives (discussed in greater detail in chapter 2) a key concern when using abrasives has become how to ensure the greatest increase in pavement friction when using abrasives for the longest period of time. There are a number of ways in which the usage of abrasives can be optimized, and these methods are discussed and compared in this report. In addition, results of an Iowa DOT test of zero-velocity spreaders are presented. Additionally in this study the results of field studies conducted in Johnson County Iowa on the road surface friction of pavements treated with abrasive applications using different modes of delivery are presented. The experiments were not able to determine any significant difference in material placement performance between a standard delivery system and a chute based delivery system. The report makes a number of recommendations based upon the reviews and the experiments.
Resumo:
Cataract surgery is a common ocular surgical procedure consisting in the implantation of an artificial intraocular lens (IOL) to replace the ageing, dystrophic or damaged natural one. The management of postoperative ocular inflammation is a major challenge especially in the context of pre-existing uveitis. The association of the implanted IOL with a drug delivery system (DDS) allows the prolonged intraocular release of anti-inflammatory agents after surgery. Thus IOL-DDS represents an "all in one" strategy that simultaneously addresses both cataract and inflammation issues. Polymeric DDS loaded with two model anti-inflammatory drugs (triamcinolone acetonide (TA) and cyclosporine A (CsA)) were manufactured in a novel way and tested regarding their efficiency for the management of intraocular inflammation during the 3 months following surgery. The study involved an experimentally induced uveitis in rabbits. Experimental results showed that medicated DDS efficiently reduced ocular inflammation (decrease of protein concentration in aqueous humour, inflammatory cells in aqueous humour and clinical score). Additionally, more than 60% of the loading dose remained in the DDS at the end of the experiment, suggesting that the system could potentially cover longer inflammatory episodes. Thus, IOL-DDS were demonstrated to inhibit intraocular inflammation for at least 3 months after cataract surgery, representing a potential novel approach to cataract surgery in eyes with pre-existing uveitis.
Resumo:
Photoreceptors and retinal pigment epithelial cells (RPE) targeting remains challenging in ocular gene therapy. Viral gene transfer, the only method having reached clinical evaluation, still raises safety concerns when administered via subretinal injections. We have developed a novel transfection method in the adult rat, called suprachoroidal electrotransfer (ET), combining the administration of nonviral plasmid DNA into the suprachoroidal space with the application of an electrical field. Optimization of injection, electrical parameters and external electrodes geometry using a reporter plasmid, resulted in a large area of transfected tissues. Not only choroidal cells but also RPE, and potentially photoreceptors, were efficiently transduced for at least a month when using a cytomegalovirus (CMV) promoter. No ocular complications were recorded by angiographic, electroretinographic, and histological analyses, demonstrating that under selected conditions the procedure is devoid of side effects on the retina or the vasculature integrity. Moreover, a significant inhibition of laser induced-choroidal neovascularization (CNV) was achieved 15 days after transfection of a soluble vascular endothelial growth factor receptor-1 (sFlt-1)-encoding plasmid. This is the first nonviral gene transfer technique that is efficient for RPE targeting without inducing retinal detachment. This novel minimally invasive nonviral gene therapy method may open new prospects for human retinal therapies.
Resumo:
Systemic administration of cyclosporine A (CsA) is commonly used in the treatment of local ophthalmic conditions involving cytokines, such as corneal graft rejection, autoimmune uveitis and dry eye syndrome. Local administration is expected to avoid the various side effects associated with systemic delivery. However, the currently available systems using oils to deliver CsA topically are poorly tolerated and provide a low bioavailability. These difficulties may be overcome through formulations aimed at improving CsA water solubility (e.g. cyclodextrins), or those designed to facilitate tissue drug penetration using penetration enhancers. The use of colloidal carriers (micelles, emulsions, liposomes and nanoparticles) as well as the approach using hydrosoluble prodrugs of CsA have shown promising results. Solid devices such as shields and particles of collagen have been investigated to enhance retention time on the eye surface. Some of these topical formulations have shown efficacy in the treatment of extraocular diseases but were inefficient at reaching intraocular targets. Microspheres, implants and liposomes have been developed to be directly administered subconjunctivally or intravitreally in order to enhance CsA concentration in the vitreous. Although progress has been made, there is still room for improvement in CsA ocular application, as none of these formulations is ideal.
Resumo:
PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells.
Resumo:
PURPOSE: To evaluate the safety and potential use of poly(lactic) acid (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as vectors for gene transfer to RPE cells. METHODS: Experiments were conducted with primary bovine RPE cells and with the ARPE-19 human RPE cell line. Rhodamine loaded NPs were used to study factors influencing the internalization process by the various RPE cells: concentrations of NPs, duration of contact time, stage of cell culture and ambient temperature. The extent of NPs internalization was evaluated by fluorescence and phase microscopy. Potential NP toxicity was measured by the trypan blue exclusion dye test and the MTT method. Green fluorescent protein (GFP) plasmid or red nuclear fluorescent protein (RNFP) plasmid were sequestered in NPs. The ability ot these "loaded" NPs to generate gene transfection and protein expression in RPE cells was assessed both in vivo and in vitro by fluorescence and confocal microscopy. RESULTS: The extent of NP internalization in cultured cells increases with their concentration reaching a plateau at 1 mg/ml and a contact time of up to 6 h. Temperature and culture stage did not influence the in vitro internalization process. No toxic effects on RPE cells could be detected when these were incubated with up to 4 mg/ml of NPs. In human and bovine RPE cells incubated with GFP loaded NPs, cytoplasmic green fluorescence was observed in 14+/-1.65% of the cultured cells. Incubation with RNFP loaded NPs yielded a nuclear red fluorescence in 18.9+/-1.6% of the cells. These percentage levels of expression initially detected after 48 h of incubation remained unchanged during the following 8 additional days in culture. No significant differences in the extent of cytoplasm or nuclear fluorescence expression were observed between bovine or human RPE cultured cells. In vivo, a preferential RNFP expression within the RPE cell layer was detected after intra vitreous injection of RNFP plasmid loaded NPs. CONCLUSIONS: The ability of PLGA NPs to sequester plasmids, their nontoxic characteristics, and rapid internalization enables gene transfer and expression in RPE cells. These findings may be of potential use when designing future gene therapy strategies for ocular diseases of the posterior segment.
Resumo:
PURPOSE: Pharmacologic modulation of wound healing after glaucoma filtering surgery remains a major clinical challenge in ophthalmology. Poly(ortho ester) (POE) is a bioerodible and biocompatible viscous polymer potentially useful as a sustained drug delivery system that allows the frequency of intraocular injections to be reduced. The purpose of this study was to determine the efficacy of POE containing a precise amount of 5-fluorouracil (5-FU) in an experimental model of filtering surgery in the rabbit. METHODS: Trabeculectomy was performed in pigmented rabbit eyes. An ointmentlike formulation of POE containing 1% wt/wt 5-FU was injected subconjunctivally at the site of surgery, during the procedure. Intraocular pressure (IOP), bleb persistence, and ocular inflammatory reaction were monitored until postoperative day 30. Quantitative analysis of 5-FU was performed in the anterior chamber. Histologic analysis was used to assess the appearance of the filtering fistula and the polymer's biocompatibility. RESULTS: The decrease in IOP from baseline and the persistence of the filtering bleb were significantly more marked in the 5-FU-treated eyes during postoperative days 9 through 28. Corneal toxicity triggered by 5-FU was significantly lower in the group that received 5-FU in POE compared with a 5-FU tamponade. Histopathologic evaluation showed that POE was well tolerated, and no fibrosis occurred in eyes treated with POE containing 5-FU. CONCLUSIONS: In this rabbit model of trabeculectomy, the formulation based on POE and containing a precise amount of 5-FU reduced IOP and prolonged bleb persistence in a way similar to the conventional method of a 5-FU tamponade, while significantly reducing 5-FU toxicity.
Resumo:
OBJECTIVE: To determine whether infusion line compliance contributes to irregular drug delivery during vertical displacement of syringe pumps. DESIGN: Five different commercially available infusion lines were studied at infusion rates of 0.5, 1.0, and 1.5 ml/h. Zero drug delivery time was measured after acute line loop formation (70 cm) using an electronic balance. Compliance of each infusion line was calculated using a pressure transducer and measurement of the occlusion release bolus at 300 mmHg occlusion pressure. Finally, the influence of infusion line compliance on drug delivery during acute lowering of the syringe pump was studied using low- and high-compliance infusion lines. RESULTS: Acute line loop formation resulted in zero drug delivery time from 5.1 +/- 1.5 to 44.0 +/- 6.8 s at flow rates of 0.5 ml/h. Increased flow rates significantly reduced loop-induced flow variability. A close correlation was found between zero drug delivery time and calculated infusion line compliance at 0.5 ml/h (linear regression R2 = 0.79). Lowering of the syringe pump 50 cm prolonged zero drug delivery time from 295.8 +/- 20.7 s with the low-compliance tube to 463.3 +/- 24.0 s with the high-compliance infusion line. CONCLUSIONS: Infusion line compliance contributes to irregular drug delivery associated with vertical displacement of syringe pumps. Siphoning of the infusion line during patient care should be avoided, and flow rates of 1 ml/h or higher are recommended. Low-compliance infusion lines are indicated whenever highly short-acting vasoactive drugs at low delivery rates are administered.
Resumo:
An overview of ocular implants with therapeutic application potentials is provided. Various types of implants can be used as slow release devices delivering locally the needed drug for an extended period of time. Thus, multiple periocular or intraocular injections of the drug can be circumvented and secondary complications minimized. The various compositions of polymers fulfilling specific delivery goals are described. Several of these implants are undergoing clinical trials while a few are already commercialized. Despite the paramount progress in design, safety and efficacy, the place of these implants in our clinical therapeutic arsenal remains limited. Miniaturization of the implants allowing for their direct injection without the need for a complicated surgery is a necessary development avenue. Particulate systems which can be engineered to target specifically certain cells or tissues are another promising alternative. For ocular diseases affecting the choroid and outer retina, transscleral or intrasscleral implants are gaining momentum.
Resumo:
OBJECTIVE: The aim of this study was to conduct a statistical analysis to determine the outcome of conservative treatment after delivery of a first fetus in multiple pregnancy and thus define new prognostic factors. STUDY DESIGN: Multicentre retrospective study involving 12 centers over a 10-year period. RESULTS: Twenty-eight twin pregnancies and seven triplet pregnancies which were managed conservatively. In twin pregnancies, 79% of the delayed-delivery fetuses survived; only 7% of the first delivered fetuses survived. The mean interval between deliveries was 47 days. No statistical difference was found concerning cerclage, antibiotic therapy, tocolysis and hospitalization. Earlier delivery of the first twin and premature rupture of membranes for the second twin were significantly related to a longer interval between deliveries. CONCLUSION: Delayed delivery in multifetal pregnancies can be successful if there are no contraindications and these pregnancies are managed in a tertiary perinatal center. Publications limited to successful cases have undoubtedly introduced some bias in assessment.
Resumo:
OBJECTIVES: Our analysis assessed the impact of information on patients' preferences in prescription versus over-the-counter (OTC) delivery systems. METHODS: A contingent valuation (CV) study was implemented, randomly assigning 534 lay people into the receipt of limited or extended information concerning new influenza drugs. In each information arm, people answered two questions: the first asked about willingness to pay (WTP) for the new prescription drug; the second asked about WTP for the same drug sold OTC. RESULTS: We show that WTP is higher for the OTC scenario and that the level of information plays a significant role in the evaluation of the OTC scenario, with more information being associated with an increase in the WTP. In contrast, the level of information provided has no impact on WTP for prescription medicine. Thus, for the kind of drug considered here (i.e. safe, not requiring medical supervision), a switch to OTC status can be expected to be all the more beneficial, as the patient is provided with more information concerning the capability of the drug. CONCLUSIONS: Our results shed light on one of the most challenging issues that health policy makers are currently faced with, namely the threat of a bird flu pandemic. Drug delivery is a critical component of pandemic influenza preparedness. Furthermore, the congruence of our results with the agency and demand theories provides an important test of the validity of using WTP based on CV methods.
Resumo:
Globaalin talouden rakenteet muuttuvat jatkuvasti. Yritykset toimivat kansainvälisillä markkinoilla aiempaa enemmän. Tuotannon lisäämiseksi monet yritykset ovat ulkoistaneet tuotteidensa tuki- ja ylläpitotoiminnot halvan työvoiman maihin. Yritykset voivat tällöin keskittää toimintansa ydinosamiseensa. Vapautuneita resursseja voidaan käyttää yrityksen sisäisessä tuotekehityksessä ja panostaa seuraavan sukupolven tuotteiden ja teknologioiden kehittämiseen. Diplomityö esittelee Globaalisti hajautetun toimitusmallin Internet-palveluntarjoajalle jossa tuotteiden tuki- ja ylläpito on ulkoistettu Intiaan. Teoriaosassa esitellään erilaisia toimitusmalleja ja keskitytään erityisesti hajautettuun toimitusmalliin. Tämän lisäksi luetellaan valintakriteerejä joilla voidaan arvioida projektin soveltuvuutta ulkoistettavaksi sekä esitellään mahdollisuuksia ja uhkia jotka sisältyvät globaaliin ulkoistusprosessiin. Käytäntöosassa esitellään globaali palvelun toimittamisprosessi joka on kehitetty Internet-palveluntarjoajan tarpeisiin.
Resumo:
We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the design of specific antiangiogenic strategy in diseases of the cornea.