536 resultados para Doubly charmed baryon
Resumo:
BACKGROUND: The association between smoking and total energy expenditure (TEE) is still controversial. We examined this association in a multi-country study where TEE was measured in a subset of participants by the doubly labeled water (DLW) method, the gold standard for this measurement. METHODS: This study includes 236 participants from five different African origin populations who underwent DLW measurements and had complete data on the main covariates of interest. Self-reported smoking status was categorized as either light (<7 cig/day) or high (≥7 cig/day). Lean body mass was assessed by deuterium dilution and physical activity (PA) by accelerometry. RESULTS: The prevalence of smoking was 55% in men and 16% in women with a median of 6.5 cigarettes/day. There was a trend toward lower BMI in smokers than non-smokers (not statistically significant). TEE was strongly correlated with fat-free mass (men: 0.70; women: 0.79) and with body weight (0.59 in both sexes). Using linear regression and adjusting for body weight, study site, age, PA, alcohol intake and occupation, TEE was larger in high smokers than in never smokers among men (difference of 298 kcal/day, p = 0.045) but not among women (162 kcal/day, p = 0.170). The association became slightly weaker in men (254 kcal/day, p = 0.058) and disappeared in women (-76 kcal/day, p = 0.380) when adjusting for fat-free mass instead of body weight. CONCLUSION: There was an association between smoking and TEE among men. However, the lack of an association among women, which may be partly related to the small number of smoking women, also suggests a role of unaccounted confounding factors.
Resumo:
Free-living energy expenditure (EE) was assessed in 37 young pregnant Gambian women at the 12th (n = 11, 53.5 +/- 1.7 kg), 24th (n = 14, 54.7 +/- 2.1 kg), and 36th (n = 12, 65.0 +/- 2.6 kg) wk of pregnancy and was compared with nonpregnant nonlactating (NPNL) control women (n = 12, 50.3 +/- 1.6 kg). The following two methods were used to assess EE: 1) the heart rate (HR) method using individual regression lines (HR vs EE) established at different activity levels in a respiration chamber and 2) the doubly labeled water (2H2(18)O) method in a subgroup of 25 pregnant and 7 control women. With the HR method the EE during the agricultural rainy season was found to be 2,408 +/- 87, 2,293 +/- 122, and 2,782 +/- 130 kcal/day at 12, 24, and 36 wk of gestation and were not significantly different from the control group (2,502 +/- 133 kcal/day). These findings were confirmed by the 2H2(18)O measurements, which failed to show any effect of pregnancy on EE. Expressed per unit body weight, the free-living EE was found to be lower (P less than 0.01 with 2H2(18)O method) at 36 wk of gestation than in the NPNL group. It is concluded that, in these Gambian women, energy-sparing mechanisms that contribute to meet the additional energy stress of gestation are operating during pregnancy (e.g., diminished spontaneous physical activity).
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
Purpose: The accurate estimation of total energy expenditure (TEE) is essential to allow the provision of nutritional requirements in patients treated by maintenance hemodialysis (MHD). The measurement of TEE and resting energy expenditure (REE) by direct or indirect calorimetry and doubly labeled water are complicated, timeconsuming and cumbersome in this population. Recently, a new system called SenseWear® armband (SWA) was developed to assess TEE, physical activity and REE. This device works by measurements of body acceleration in two axes, heat production and steps counts. REE measured by indirect calorimetry and SWA are well correlated. The aim of this study was to determine TEE, physical activity and REE on patients on MHD using this new device. Methods and materials: Daily TEE, REE, step count, activity time, intensity of activity and lying time were determined for 7 consecutive days in unselected stable patients on MHD and sex, age and weightmatched healthy controls (HC). Patients with malnutrition, cancer, use of immunosuppressive drugs, hypoalbumemia <35 g/L and those hospitalized in the last 3 months, were excluded. For MHD patients, separate analyses were conducted in dialysis and non-dialysis days. Relevant parameters known to affect REE, such as BMI, albumin, pre-albumin, hemoglobin, Kt/V, CRP, bicarbonate, PTH, TSH, were recorded. Results: Thirty patients on MHD and 30 HC were included. In MHD patients, there were 20 men and 10 women. Age was 60,13 years ± 14.97 (mean ± SD), BMI was 25.77 kg/m² ± 4.73 and body weight was 74.65 kg ± 16.16. There were no significant differences between the two groups. TEE was lower in MHD patients compared to HC (28.79 ± 5.51 SD versus 32.91 ± 5.75 SD kcal/kg/day; p <0.01). Activity time was significantly lower in patients on MHD (101.3 ± 12.6SD versus 50.7 ± 9.4 SD min; p = 0.0021). Energy expenditure during the time of activity was significantly lower in MHD patients. MHD patients walked 4543 ± 643 SD vs 8537 ± 744 SD steps per day (p <0.0001). Age was negatively correlated with TEE (r = -0.70) and intensity of activity (r = -0.61) in HC, but not in patients on MHD. TEE showed no difference between dialysis and non-dialysis days (29.92 ± 2.03 SD versus 28.44 ± 1.90 SD kcal/kg/day; p = NS), reflecting a lack of difference in activity (number of steps, time of physical activity) and REE. This finding was observed in MHD patients both older and younger than 60 years. However, age stratification appeared to have an influence on TEE, regardless of dialysis day, (29.92 ± 2.07 SD kcal/kg/day for <60 years-old versus 27.41 ± 1.04 SD kcal/kg/day for ≥60 years old), although failing to reach statistical significance. Conclusion: Using SWA, we have shown that stable patients on MHD have a lower TEE than matched HC. On average, a TEE of 28.79 kcal/kg/day, partially affected by age, was measured. This finding gives support to the clinical impression that it is difficult and probably unnecessary to provide an energy amount of 30-35 kcal/kg/day, as proposed by international guidelines for this population. In addition, we documented for the first time that MHD patients exert a reduced physical activity as compared to HC. There were surprisingly no differences in TEE, REE and physical activity parameters between dialysis and non-dialysis days. This observation might be due to the fact that patients on MHD produce a physical effort to reach the dialysis centre. Age per se did not influence physical activity in MHD patients, contrary to HC, reflecting the impact of co-morbidities on physical activity in this group of patients.
Resumo:
Trisomy 13 was detected in 10% of mouse embryos obtained from pregnant females which were doubly heterozygous for Robertsonian chromosomes involving chromosome 13. The developing dorsal root ganglia and spinal cords were examined in trisomy 13 and littermate control mice between days 12 and 18 of gestation (E12-18). The overall size of the dorsal root ganglia and number of ganglion cells within a given ganglion were not altered, but the number of neurons immunoreactive for calbindin and calretinin was reduced. The trisomic spinal cord was reduced in size with neurons lying in a tightly compact distribution in the gray matter. In trisomic fetuses, the extent of the neuropil of the spinal cord was reduced, and may represent a diminished field of interneuronal connectivity, due to reduced arborization of dendritic processes of the neurons present, particularly of calbindin-immunostained neurons. Furthermore, the subpopulation of calretinin-immunoreactive neurons and axons was also reduced in developing trisomic gray and white matter, respectively. Thus, overexpression of genes on mouse chromosome 13 exerts a deleterious effect on the development of neuropil, affecting both dendritic and axonal arborization in the trisomy 13 mouse. The defect of calbindin or calretinin expression by subsets of dorsal root ganglion or spinal cord neurons may result from deficient cell-to-cell interactions with targets which are hypoplastic.
Resumo:
To improve the detectability of tumors by light-induced fluorescence, the use of monoclonal antibodies (MoAb) as carriers of fluorescent molecules was studied. As a model for this approach, the biodistribution of an anticarcinoembryonic antigen (CEA) MoAb coupled to fluorescein was studied in mice bearing a human colon carcinoma xenograft. In vitro, such conjugates with fluorescein-MoAb molar ratios ranging from four to 19, doubly labeled with 125I, showed more than 82% binding to immobilized CEA. In vivo, conjugates with a fluorescein-MoAb molar ratio of ten or less resulted in a tumor uptake of more than 30% of the injected dose of radioactivity per gram tumor at 24 hours. Tumor to liver, kidney, and muscle ratios of 20, 30 and 72, respectively, were obtained 48 hours after injection of the 125I-MoAb-(fluorescein)10 conjugate. The highest fluorescence intensity was always obtained for the tumor with the anti-CEA MoAb conjugate; whereas in control mice injected with fluoresceinated control immunoglobulin G1, no detectable increase in tumor fluorescence was observed. To compare these results with a classically used dye, mice bearing the same xenografts received 60 micrograms of Photofrin II. The intensity of the fluorescence signal of the tumor with this amount of Photofrin II was eight times lower than that obtained after an injection of 442 ng of fluorescein coupled with 20 micrograms of MoAb, which gave an absolute amount of fluorescein localized in the tumor of up to 125 ng/g of tumor. These results illustrate the possibility of improving the specificity of in vivo tumor localization of dyes for laser-induced fluorescence photodetection and phototherapy by coupling them to MoAb directed against tumor markers.
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
BACKGROUND: Stem cell labeling with iron oxide (ferumoxide) particles allows labeled cells to be detected by magnetic resonance imaging (MRI) and is commonly used to track stem cell engraftment. However, the validity of MRI for distinguishing surviving ferumoxide-labeled cells from other sources of MRI signal, for example, macrophages containing ferumoxides released from nonsurviving cells, has not been thoroughly investigated. We sought to determine the relationship between the persistence of iron-dependent MRI signals and cell survival 3 weeks after injection of syngeneic or xenogeneic ferumoxides-labeled stem cells (cardiac-derived stem cells) in rats. METHODS AND RESULTS: We studied nonimmunoprivileged human and rat cardiac-derived stem cells and human mesenchymal stem cells doubly labeled with ferumoxides and beta-galactosidase and injected intramyocardially into immunocompetent Wistar-Kyoto rats. Animals were imaged at 2 days and 3 weeks after stem cell injection in a clinical 3-T MRI scanner. At 2 days, injection sites of xenogeneic and syngeneic cells (cardiac-derived stem cells and mesenchymal stem cells) were identified by MRI as large intramyocardial signal voids that persisted at 3 weeks (50% to 90% of initial signal). Histology (at 3 weeks) revealed the presence of iron-containing macrophages at the injection site, identified by CD68 staining, but very few or no beta-galactosidase-positive stem cells in the animals transplanted with syngeneic or xenogeneic cells, respectively. CONCLUSIONS: The persistence of significant iron-dependent MRI signal derived from ferumoxide-containing macrophages despite few or no viable stem cells 3 weeks after transplantation indicates that MRI of ferumoxide-labeled cells does not reliably report long-term stem cell engraftment in the heart.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
The natural formation of the bioactive C17-polyacetylenes (−)-(R)-panaxynol and panaxydol was analyzed by 13C-labeling experiments. For this purpose, plants of Panax ginseng were supplied with 13CO2 under field conditions or, alternatively, sterile root cultures of P. ginseng were supplemented with [U-13C6]glucose. The polyynes were isolated from the labeled roots or hairy root cultures, respectively, and analyzed by quantitative NMR spectroscopy. The same mixtures of eight doubly 13C-labeled isotopologues and one single labeled isotopologue were observed in the C17-polyacetylenes obtained from the two experiments. The polyketide-type labeling pattern is in line with the biosynthetic origin of the compounds via decarboxylation of fatty acids, probably of crepenynic acid. The 13C-study now provides experimental evidence for the biosynthesis of panaxynol and related polyacetylenes in P. ginseng under in planta conditions as well as in root cultures. The data also show that 13CO2 experiments under field conditions are useful to elucidate the biosynthetic pathways of metabolites, including those from roots.
Resumo:
This report details the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM), coupled mechanically to a flywheel and electrically to the power grid and to a local varying load). Both subsystems have been essentially described in previous reports (deliverables D 0.5 and D 4.3.1), although some previously unpublished details are presented here. The B2B is a variable structure system (VSS), due to the presence of control-actuated switches: however from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond-graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presents and coupled through a power-preserving interconnection, and the Hamiltonian description of the whole system is obtained; detailed bond-graphs of all the subsystems and the complete system are provided.
Resumo:
Inclusive doubly differential cross sections d 2 σ pA /dx F dp T 2 as a function of Feynman-x (x F ) and transverse momentum (p T ) for the production of K S 0 , Λ and Λ¯ in proton-nucleus interactions at 920 GeV are presented. The measurements were performed by HERA-B in the negative x F range (−0.12
Resumo:
Studies on the role of diet in the development of chronic diseases often rely on self-report surveys of dietary intake. Unfortunately, many validity studies have demonstrated that self-reported dietary intake is subject to systematic under-reporting, although the vast majority of such studies have been conducted in industrialised countries. The aim of the present study was to investigate whether or not systematic reporting error exists among the individuals of African ancestry (n 324) in five countries distributed across the Human Development Index (HDI) scale, a UN statistic devised to rank countries on non-income factors plus economic indicators. Using two 24 h dietary recalls to assess energy intake and the doubly labelled water method to assess total energy expenditure, we calculated the difference between these two values ((self-report - expenditure/expenditure) × 100) to identify under-reporting of habitual energy intake in selected communities in Ghana, South Africa, Seychelles, Jamaica and the USA. Under-reporting of habitual energy intake was observed in all the five countries. The South African cohort exhibited the highest mean under-reporting ( - 52·1% of energy) compared with the cohorts of Ghana ( - 22·5%), Jamaica ( - 17·9%), Seychelles ( - 25·0%) and the USA ( - 18·5%). BMI was the most consistent predictor of under-reporting compared with other predictors. In conclusion, there is substantial under-reporting of dietary energy intake in populations across the whole range of the HDI, and this systematic reporting error increases according to the BMI of an individual.
Resumo:
Two graphs with adjacency matrices $\mathbf{A}$ and $\mathbf{B}$ are isomorphic if there exists a permutation matrix $\mathbf{P}$ for which the identity $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B}$ holds. Multiplying through by $\mathbf{P}$ and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to $\Omega(n)$ levels, where $n$ is the number of vertices in the graph.