988 resultados para Double negative T lymphocyte
Resumo:
The demonstration that both oxygen atoms of 1,7-dioxaspiro[5.5] undecane (1), the sex-pheromone of the female olive fly, originate from dioxygen, strongly implicates monooxygenase mediated processes in assembly of (1), and reveals unexpected complexity in the formation of its nine-carbon precursor.
Resumo:
The pathophysiology of chronic fatigue syndrome (CFS) remains unclear; however, both biological and psychological factors have been implicated in establishing or maintaining this condition. People with CFS report significant and disabling cognitive difficulties such as impaired concentration that in some cases are exacerbated by exposure to chemical triggers. The aim of this study was to determine if neuropsychological deficits in CFS are triggered by exposure to chemicals, or perceptions about the properties of these substances. Participants were 36 people with a primary diagnosis of CFS, defined according to Centers for Disease Control (CDC) criteria. A randomized, double-blind, placebo-controlled, crossover design was used, with objective assessment of neuropsychological function and participant rating of substance type, before and after exposure to placebo or chemical trigger. Results showed decrements in neuropsychological tests scores on three out of four outcome measures when participants rated the substance they had been exposed to as chemical. No change in performance was found based on actual substance type. These results suggest that cognitive attributions about exposure substances in people with CFS may be associated with worse performance on neuropsychological tasks. In addition, these findings suggest that psychological interventions aimed at modifying substance-related cognitions may reduce some symptoms of CFS.
Resumo:
Objective: To analyze from a health sector perspective the cost-effectiveness of dexamphetamine (DEX) and methylphenidate (MPH) interventions to treat childhood attention deficit hyperactivity disorder (ADHD), compared to current practice. Method: Children eligible for the interventions are those aged between 4 and 17 years in 2000, who had ADHD and were seeking care for emotional or behavioural problems, but were not receiving stimulant medication. To determine health benefit, a meta-analysis of randomized controlled trials was performed for DEX and MPH, and the effect sizes were translated into utility values. An assessment on second stage filter criteria ('equity', 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') is also undertaken to incorporate additional factors that impact on resource allocation decisions. Simulation modelling techniques are used to present a 95% uncertainty interval (UI) around the incremental cost-effectiveness ratio (ICER), which is calculated in cost (in A$) per DALY averted. Results: The ICER for DEX is A$4100/DALY saved (95% UI: negative to A$14 000) and for MPH is A$15 000/DALY saved (95% UI: A$9100-22 000). DEX is more costly than MPH for the government, but much less costly for the patient. Conclusions: MPH and DEX are cost-effective interventions for childhood ADHD. DEX is more cost-effective than MPH, although if MPH were listed at a lower price on the Pharmaceutical Benefits Scheme it would become more cost-effective. Increased uptake of stimulants for ADHD would require policy change. However, the medication of children and wider availability of stimulants may concern parents and the community.
Resumo:
We outline a scheme to accomplish measurements of a solid state double well system (DWS) with both one and two electrons in nonlocalized bases. We show that, for a single particle, measuring the local charge distribution at the midpoint of a DWS using a SET as a sensitive electrometer amounts to performing a projective measurement in the parity (symmetric/antisymmetric) eigenbasis. For two-electrons in a DWS, a similar configuration of SET results in close-to-projective measurement in the singlet/triplet basis. We analyze the sensitivity of the scheme to asymmetry in the SET position for some experimentally relevant parameter, and show that it is experimentally realizable.
Resumo:
The electrochemical performance of carbon fibers (CF) and boron-doped diamond electrodes grown on carbon fiber substrate (BDD/CF) was studied. CF substrates were obtained from polyacrylonitrile precursor heat treated at two different temperatures of 1000 and 2000 degrees C to produce the desirable CF carbon graphitization index. This graphitization process influenced the CF conductivity and its chemical surface, also analyzed from X-ray photoelectron spectroscopy measurements. These three-dimensional CF structures allowed a high incorporation of diamond films compared to other carbon substrates such as glass carbon or HOPG. The electrochemical responses, from these four classes of electrodes, were evaluated focusing their application as electrical double-layer capacitors using cyclic voltammetry and impedance measurements. Cyclic voltammetry results revealed that the electrode formed from BDD grown on CF-2000 presented a typical capacitor behavior with the best rectangular shape, compared to those electrodes of CF or BDD/CF-1000. Furthermore, the BDD/CF-2000 electrode presented the lowest impedance, associated to its significant capacitance value of 1940 mu F/cm(2) taking into account the BDD films. This behavior was attributed to the strong dependence between diamond coating texture and the CF graphitization temperature. The largest surface area of BDD/CF-2000 was promoted by its singular film growth mechanism associated to the substrate chemical surface. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
CNPq
Resumo:
New organic/inorganic (O/I) hybrid assemblies based on Layered Double Hydroxide (LDH) with polyamide amine dendrimer (PAMAM, generation -0.5 and generation +0.5) were prepared by two different routes using either the direct coprecipitation at constant pH or the anion exchange procedure in double surfactant S(+)S(-) phases. The obtained materials were characterized by means of powder X-ray diffraction, thermal gravimetric analysis associated with mass spectrometry, and Fourier-transform infrared spectroscopy. X-ray powder diffraction pattern of the O/I LDH assembly exhibit characteristic profiles of LDH-based materials with basal spacing depending on the nature of the dendrimer. Indeed, for both synthetic procedures, interleaved PAMAM -0.5 gives rise to an interlayer space in agreement with a perpendicular molecular arrangement against the layer of the host structure. For PAMAM+0.5, considering its spherical dimension, a much smaller basal spacing was observed. This observation was interpreted as shrinkage of the molecule to accommodate the interlayer LDH gap, which was rendered possible by the bond angle twisting within PAMAM-0.5. FTIR spectra confirm the presence of both moieties inside both Zn(2)Al/PAMAM G-0.5 and Zn(2)Al/PAMAM G+0.5 assemblies. Finally, thermal analysis associated with mass spectrometry confirm this composition, and in situ temperature XRD data reveal that the highly constrained arrangement for the generation +0.5 is not accompanied by a gain in thermal structural stability; in fact, the assembly prepared from PAMAM -0.5 is more stable. Both O/I PAMAM LDH assemblies constitute well-defined materials which are candidate for catalytic applications.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
We examined (N = 76) how social creativity strategies such as intergroup differentiation and intragroup respect suppress the negative impact of threat to an ingroup's value on group identification. Threat was manipulated through false feedback concerning how other groups perceived an ingroup. Both intergroup differentiation and intragroup respect were higher when participants learned that the ingroup was devalued compared to when it was valued. Mediational analyses demonstrated that these factors suppressed the direct negative relationship between value threat and group identification. Discussion focused on the consequences of these social creativity strategies for group identification and collective action. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The divided visual field technique was used to investigate the pattern of brain asymmetry in the perception of positive/approach and negative/withdrawal facial expressions. A total of 80 undergraduate students (65 female, 15 male) were distributed in five experimental groups in order to investigate separately the perception of expressions of happiness, surprise, fear, sadness, and the neutral face. In each trial a target and a distractor expression were presented simultaneously in a computer screen for 150 ms and participants had to determine the side (left or right) on which the target expression was presented. Results indicated that expressions of happiness and fear were identified faster when presented in the left visual field, suggesting an advantage of the right hemisphere in the perception of these expressions. Fewer judgement errors and faster reaction times were also observed for the matching condition in which emotional faces were presented in the left visual field and neutral faces in the right visual field. Other results indicated that positive expressions (happiness and surprise) were perceived faster and more accurately than negative ones (sadness and fear). Main results tend to support the right hemisphere hypothesis, which predicts a better performance of the right hemisphere to perceive emotions, as opposed to the approach-withdrawal hypothesis.
Resumo:
We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.