980 resultados para Dominant-negative Mutant
Resumo:
Background: p63 gene is a p53 homologue that encodes proteins with transactivation, DNA-binding and tetramerisation domains. The isoforms TAp63 and TAp73 transactivate p53 target genes and induce apoptosis, whereas the isoforms Delta Np63 and Delta Np73 lack transactivation and might have dominant-negative effects in p53 family members. p63 is expressed in germinal centre lymphocytes and can be related to the development of the lymphoma, but the prognostic significance of its expression in the survival of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. Aims: To determine whether quantitative immunohistochemical (IHC) analysis of p63 protein expression correlates with CD10 antigen, Bcl-6 antigen and IRF4 antigen expression and to determine whether p63 is a surrogate predictor of overall survival in high-intermediate and high risk DLBCL populations. Methods: CD10, Bcl-6 and IRF4 expression were retrospectively evaluated by IHC in 73 samples of high intermediate and high risk DLBCL and were used to divide the lymphomas into subgroups of germinal centre B-celllike (GCB) and activate B-cell-like (ABC) DLBCL. Similarly, p63 expression was evaluated by IHC and the results were compared with subgroups of DLBCL origin and with the survival rates for these patients. Results: p63 was expressed in more than 50% of malignant cells in 11 patients and did not show correlation with subgroups of GCB-like DLBCL or ABC-like DLBCL, but p63(+) patients had better disease-free survival (DFS) than those who were negative (p = 0.01). Conclusions: p63(+) high-intermediate and high risk DLBCL patients have a better DFS than negative cases.
Resumo:
TP73 encodes for two proteins: full-length TAp73 and Delta Np73, which have little transcriptional activity and exert dominant-negative function towards TP53 and TAp73. We compared TATP73 and Delta NTP73 expression in acute myeloid leukaemia (AML) samples and normal CD34(+) progenitors. Both forms were more highly expressed in leukaemic cells. Amongst AML blasts, TATP73 was more expressed in AML harbouring the recurrent genetic abnormalities (RGA): PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11, whereas higher Delta NTP73 expression was detected in non-RGA cases. TP53 expression did not vary according to Delta NTP73/TATP73 expression ratio. Leukaemic cells with higher Delta NTP73/TATP73 ratios were significantly more resistant to cytarabine-induced apoptosis.
Resumo:
p73 has recently been identified as a structural and functional homolog of the tumor suppressor protein p53. Overexpression of p53 activates transcription of p53 effector genes, causes growth inhibition and induced apoptosis. We describe here the effects of a tumor-derived truncated transcript of p73 alpha (p73 Delta exon2) on p53 function and on cell death. This transcript, which lacks the acidic N-terminus corresponding to the transactivation domain of p53, was initially detected in a neuroblastoma cell line. Overexpression of p73 Delta exon2 partially protects lymphoblastoid cells against apoptosis induced by anti-Fas antibody or cisplatin. By cotransfecting p73 Delta exon2 with wild-type p53 in the p53 null line Saos 2, we found that this truncated transcript reduces the ability of wild-type p53 to promote apoptosis. This anti-apoptotic effect was also observed when p73 Delta exon2 was co-transfected with full-length p73 (p73 alpha). This was further substantiated by suppression of p53 transactivation of the effector gene p21-Waf1 in p73 Delta exon2 transfected cells and by inhibition of expression of a reporter gene under the control of the p53 promoter. Thus, this truncated form of p73 can act as a dominant-negative agent towards transactivation by p53 and p73 alpha, highlighting the potential implications of these findings for p53 signaling pathway. Furthermore, we demonstrate the existence of a p73 Delta exon2 transcript in a very significant proportion (46%) of breast cancer cell lines. However, a large spectrum of normal and malignant tissues need to be surveyed to determine whether this transdominant p73 variant occurs in a tumor-specific manner.
Resumo:
Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane microlocalization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC 12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.
Resumo:
Previous studies have shown that Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) is uniquely able to up-regulate the expression of the peptide transporters (referred to as TAP-1 and TAP-2) and major histocompatibility complex (MHC) class I in Burkitt's lymphoma (BL) cell lines. This up-regulation is often accompanied by a restoration of antigen-presenting function as measured by the ability of these cells to present endogenously expressed viral antigen to cytotoxic T lymphocytes. Here we show that the expression of LMP1 resulted in up-regulation and nuclear translocation of RelB that were coincident with increased expression of MHC class I in BL cells. Deletion of the C-terminal activator regions (CTARs) of LMP1 significantly impaired the abilities of LMP1 to translocate RelB into the nucleus and to up-regulate the expression of antigen-processing genes. Further analysis with single-point mutations within the CTARs confirmed that the residues critical for NF-kappaB activation directly contribute to antigen-processing function regulation in BL cells. This LMP1-mediated effect was blocked following expression of either dominant negative IkappaBalpha S32/36A, an NF-kappaB inhibitor, or antisense RelB. These observations indicate that upregulation of antigen-presenting function in B cells mediated by LMP1 is signaled through the NF-kappaB subunit RelB. The data provide a mechanism by which LMP1 modulates immunogenicity of Epstein-Barr virus-infected normal and malignant cells.
Resumo:
To address the hypothesis that certain disease-associated mutants of the breast-ovarian cancer susceptibility gene BRCA1 have biological activity in vivo, we have expressed a truncated Brca1 protein (trBrca1) in cell-lines and in the mammary gland of transgenic mice. Immunofluorescent analysis of transfected cell-lines indicates that trBRCA1 is a stable protein and that it is localized in the cell cytoplasm. Functional analysis of these cell-lines indicates that expression of trBRCA1 confers an increased radiosensitivity phenotype on mammary epithelial cells, consistent with abrogation of the BRCA1 pathway. MMTV-trBrca1 transgenic mice from two independent lines displayed a delay in lactational mammary gland development, as demonstrated by altered histological profiles of lobuloalveolar structures. Cellular and molecular analyses indicate that this phenotype results from a defect in differentiation, rather than altered rates of proliferation or apoptosis. The results presented in this paper are consistent with trBrca1 possessing dominant-negative activity and playing an important role in regulating normal mammary development. They may also have implications for germline carriers of BRCA1 mutations.
Resumo:
E2F regulation is essential for normal cell cycle progression. Therefore, it is not surprising that squamous cell carcinoma cell lines (SCC) overexpress E2F1 and exhibit deregulated E2F activity when compared with normal keratinocytes. Indeed, deliberate E2F1 deregulation has been shown to induce hyperplasia and skin tumor formation. In this study, we report on a dual role for E2F as a mediator of keratinocyte proliferation and modulator of squamous differentiation. Overexpression of E2F isoforms in confluent primary keratinocyte cultures resulted in suppression of differentiation-associated markers. Moreover, we found that the DNA binding domain and the trans-activation domain of E2F1 are important in mediating suppression of differentiation. Use of a dominant/negative form of E2F1 ( E2F d/n) found that E2F inhibition alone is sufficient to suppress the activity of proliferation-associated markers but is not capable of inducing differentiation markers. However, if the E2F d/n is expressed in differentiated keratinocytes, differentiation marker activity is further induced, suggesting that E2F may act as a modulator of squamous differentiation. We therefore examined the effects of E2F d/n in a differentiation- insensitive SCC cell line. We found that treatment with the differentiating agent, 12-O-tetradecanoyl- phorbol-13-acetate (TPA), or expression of E2F d/n alone had no effect on differentiation markers. However, a combination of E2F d/n + TPA induced the expression of differentiation markers. Combined, these data indicate that E2F may play a key role in keratinocyte differentiation. These data also illustrate the unique potential of anti-E2F therapies in arresting proliferation and inducing differentiation of SCCs.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Estudi elaborat a partir dâuna estada a la School of Life Sciences de la University of Dundee, Gran Bretanya, entre gener i març del 2007.L'estrès osmòtic causa rà pidament l'activació de la quinasa WNK1, que fosforila i activa a continuació les quinases SPAK i OSR1, que alhora regulen canals i transportadors dâions preexistents a la membrana celâ¢lular. El factor de transcripció NFAT5 és el principal regulador de la resposta celâ¢lular transcripcional secundà ria a hipertonicitat i sâha descrit que les quinases p38, Fyn, PKA, ERK/MEK i ATM estan involucrades en la seva regulació post-traduccional. No obstant, com que la funció dâaquestes quinases no explica totalment els mecanismes d'activació de NFAT5, sâha estudiat si lâactivitat transcripcional de NFAT5 pot estar regulada per WNK1, SPAK o OSR1. Aixà doncs, es va observar que lâactivitat dâun reporter dependent de NFAT5 no es veu afectada per la presència de cap de les quinases anteriors, en la seva forma wild-type o dominant negatiu. Dâaltra banda, es va estudiar quin domini de WNK1 és necessari per a que pugui respondre a hipertonicitat i quines quinases poden estar involucrades en la fosforilació de la serina 382 de WNK1. En conclusió, les dades obtingudes apunten que lâactivació de WNK1 en resposta a estrès osmòtic requereix la seva fosforilació en la serina 382 per quinases upstream com PAK2 o RSK i que també és necessari un dels seus dominis coiled-coil, almenys els aminoà cids 558 i 561. Aquests processos, però, semblen ser independents de lâactivació de NFAT5 en resposta a hipertonicitat. ââ
Resumo:
Pseudomonas aeruginosa produces the toxic secondary metabolite hydrogen cyanide (HCN) at high cell population densities and low aeration. Here, we investigated the impact of HCN as a signal in cell-cell communication by comparing the transcriptome of the wild-type strain PAO1 to that of an HCN-negative mutant under cyanogenic conditions. HCN repressed four genes and induced 12 genes. While the individual functions of these genes are unknown, with one exception (i.e. a ferredoxin-dependent reductase), a highly inducible six-gene cluster (PA4129-PA4134) was found to be crucial for protection of P.aeruginosa from external HCN intoxication. A double mutant deleted for PA4129-PA4134 and cioAB (encoding cyanide-insensitive oxidase) did not grow with 100M KCN, whereas the corresponding single mutants were essentially unaffected, suggesting a synergistic action of the PA4129-PA4134 gene products and cyanide-insensitive oxidase.
Resumo:
AIM/HYPOTHESIS: Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)β/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells. METHODS: Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARβ/δ-deficient mice and mice exposed to a high-fat diet. RESULTS: The PPARβ/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARβ/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARβ/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARβ/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARβ/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARβ/δ activation. CONCLUSIONS/INTERPRETATION: Overall, these findings indicate that PPARβ/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.
Resumo:
TRAIL induces apoptosis through two closely related receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Here we show that TRAIL-R1 can associate with TRAIL-R2, suggesting that TRAIL may signal through heteroreceptor signaling complexes. Both TRAIL receptors bind the adaptor molecules FADD and TRADD, and both death signals are interrupted by a dominant negative form of FADD and by the FLICE-inhibitory protein FLIP. The recruitment of TRADD may explain the potent activation of NF-kappaB observed by TRAIL receptors. Thus, TRAIL receptors can signal both death and gene transcription, functions reminiscent of those of TNFR1 and TRAMP, two other members of the death receptor family.
Resumo:
Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1-silencing transcription factor (REST)/neuron-restrictive silencer factor, the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY-monomeric red fluorescent protein-labeled DCVs to undergo Ca21 -dependent exocytosis, which was largely prevented by botulinum toxin B. In the I-II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte RESTwas variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the wellknown structural/ functional heterogeneity of astrocytes.
Resumo:
Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.