380 resultados para Dividend Imputation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Zuge der Novellierung der Gasnetzzugangsverordnung sowie des Erneuerbare-Energien-Gesetzes entwickelte sich die Einspeisung von Biomethan in das Erdgasnetz als alternative Investitionsmöglichkeit der Erneuerbare-Energien-Branche. Als problematisch erweist sich dabei die Identifikation und Strukturierung einzelner Risikofaktoren zu einem Risikobereich, sowie die anschließende Quantifizierung dieser Risikofaktoren innerhalb eines Risikoportfolios. Darüber hinaus besteht die Schwierigkeit, diese Risikofaktoren in einem cashflowbasierten und den Ansprüchen der Investoren gewachsenem Risikomodell abzubilden. Zusätzlich müssen dabei Wechselwirkungen zwischen einzelnen Risikofaktoren berücksichtigt werden. Aus diesem Grund verfolgt die Dissertation das Ziel, die Risikosituation eines Biomethanprojektes anhand aggregierter und isolierter Risikosimulationen zu analysieren. Im Rahmen einer Diskussion werden Strategien und Instrumente zur Risikosteuerung angesprochen sowie die Implementierungsfähigkeit des Risikomodells in das Risikomanagementsystem von Investoren. Die Risikomaße zur Beschreibung der Risikoauswirkung betrachten die Shortfälle einer Verteilung. Dabei beziehen sich diese auf die geplanten Ausschüttungen sowie interne Verzinsungsansprüche der Investoren und die von Kreditinstituten geforderte minimale Schuldendienstdeckungsrate. Im Hinblick auf die Risikotragfähigkeit werden liquiditätsorientierte Kennzahlen hinzugezogen. Investoren interessieren sich vor dem Hintergrund einer gezielten Risikosteuerung hauptsächlich für den gefahrvollsten Risikobereich und innerhalb dessen für den Risikofaktor, der die größten Risikoauswirkungen hervorruft. Zudem spielt der Zeitpunkt maximaler Risikoauswirkung eine große Rolle. Als Kernaussage dieser Arbeit wird festgestellt, dass in den meisten Fällen die Aussagefähigkeit aggregierter Risikosimulationen durch Überlagerungseffekte negativ beeinträchtigt wird. Erst durch isoliert durchgeführte Risikoanalysen können diese Effekte eliminiert werden. Besonders auffällig gestalten sich dabei die Ergebnisse der isoliert durchgeführten Risikoanalyse des Risikobereichs »Politik«. So verursacht dieser im Vergleich zu den übrigen Risikobereichen, wie »Infrastruktur«, »Rohstoffe«, »Absatzmarkt« und »Finanzmarkt«, die geringsten Wahrscheinlichkeiten avisierte Planwerte der Investoren zu unterschreiten. Kommt es jedoch zu einer solchen Planwert-Unterschreitung, nehmen die damit verbundenen Risikoauswirkungen eine überraschende Position im Risikoranking der Investoren ein. Hinsichtlich der Aussagefähigkeit des Risikomodells wird deutlich, dass spezifische Risikosichtweisen der Investoren ausschlaggebend dafür sind, welche Strategien und Instrumente zur Risikosenkung umgesetzt werden. Darüber hinaus wird festgestellt, dass die Grenzen des Risikomodells in der Validität der Expertenmeinungen und dem Auffinden einer Optimallösung zu suchen sind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As stated in Aitchison (1986), a proper study of relative variation in a compositional data set should be based on logratios, and dealing with logratios excludes dealing with zeros. Nevertheless, it is clear that zero observations might be present in real data sets, either because the corresponding part is completely absent –essential zeros– or because it is below detection limit –rounded zeros. Because the second kind of zeros is usually understood as “a trace too small to measure”, it seems reasonable to replace them by a suitable small value, and this has been the traditional approach. As stated, e.g. by Tauber (1999) and by Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000), the principal problem in compositional data analysis is related to rounded zeros. One should be careful to use a replacement strategy that does not seriously distort the general structure of the data. In particular, the covariance structure of the involved parts –and thus the metric properties– should be preserved, as otherwise further analysis on subpopulations could be misleading. Following this point of view, a non-parametric imputation method is introduced in Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000). This method is analyzed in depth by Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) where it is shown that the theoretical drawbacks of the additive zero replacement method proposed in Aitchison (1986) can be overcome using a new multiplicative approach on the non-zero parts of a composition. The new approach has reasonable properties from a compositional point of view. In particular, it is “natural” in the sense that it recovers the “true” composition if replacement values are identical to the missing values, and it is coherent with the basic operations on the simplex. This coherence implies that the covariance structure of subcompositions with no zeros is preserved. As a generalization of the multiplicative replacement, in the same paper a substitution method for missing values on compositional data sets is introduced

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All of the imputation techniques usually applied for replacing values below the detection limit in compositional data sets have adverse effects on the variability. In this work we propose a modification of the EM algorithm that is applied using the additive log-ratio transformation. This new strategy is applied to a compositional data set and the results are compared with the usual imputation techniques

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low concentrations of elements in geochemical analyses have the peculiarity of being compositional data and, for a given level of significance, are likely to be beyond the capabilities of laboratories to distinguish between minute concentrations and complete absence, thus preventing laboratories from reporting extremely low concentrations of the analyte. Instead, what is reported is the detection limit, which is the minimum concentration that conclusively differentiates between presence and absence of the element. A spatially distributed exhaustive sample is employed in this study to generate unbiased sub-samples, which are further censored to observe the effect that different detection limits and sample sizes have on the inference of population distributions starting from geochemical analyses having specimens below detection limit (nondetects). The isometric logratio transformation is used to convert the compositional data in the simplex to samples in real space, thus allowing the practitioner to properly borrow from the large source of statistical techniques valid only in real space. The bootstrap method is used to numerically investigate the reliability of inferring several distributional parameters employing different forms of imputation for the censored data. The case study illustrates that, in general, best results are obtained when imputations are made using the distribution best fitting the readings above detection limit and exposes the problems of other more widely used practices. When the sample is spatially correlated, it is necessary to combine the bootstrap with stochastic simulation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is almost not a case in exploration geology, where the studied data doesn’t includes below detection limits and/or zero values, and since most of the geological data responds to lognormal distributions, these “zero data” represent a mathematical challenge for the interpretation. We need to start by recognizing that there are zero values in geology. For example the amount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-exists with nepheline. Another common essential zero is a North azimuth, however we can always change that zero for the value of 360°. These are known as “Essential zeros”, but what can we do with “Rounded zeros” that are the result of below the detection limit of the equipment? Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimes we need to differentiate between a sodic and a potassic alteration. Pre-classification into groups requires a good knowledge of the distribution of the data and the geochemical characteristics of the groups which is not always available. Considering the zero values equal to the limit of detection of the used equipment will generate spurious distributions, especially in ternary diagrams. Same situation will occur if we replace the zero values by a small amount using non-parametric or parametric techniques (imputation). The method that we are proposing takes into consideration the well known relationships between some elements. For example, in copper porphyry deposits, there is always a good direct correlation between the copper values and the molybdenum ones, but while copper will always be above the limit of detection, many of the molybdenum values will be “rounded zeros”. So, we will take the lower quartile of the real molybdenum values and establish a regression equation with copper, and then we will estimate the “rounded” zero values of molybdenum by their corresponding copper values. The method could be applied to any type of data, provided we establish first their correlation dependency. One of the main advantages of this method is that we do not obtain a fixed value for the “rounded zeros”, but one that depends on the value of the other variable. Key words: compositional data analysis, treatment of zeros, essential zeros, rounded zeros, correlation dependency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The R-package “compositions”is a tool for advanced compositional analysis. Its basic functionality has seen some conceptual improvement, containing now some facilities to work with and represent ilr bases built from balances, and an elaborated subsys- tem for dealing with several kinds of irregular data: (rounded or structural) zeroes, incomplete observations and outliers. The general approach to these irregularities is based on subcompositions: for an irregular datum, one can distinguish a “regular” sub- composition (where all parts are actually observed and the datum behaves typically) and a “problematic” subcomposition (with those unobserved, zero or rounded parts, or else where the datum shows an erratic or atypical behaviour). Systematic classification schemes are proposed for both outliers and missing values (including zeros) focusing on the nature of irregularities in the datum subcomposition(s). To compute statistics with values missing at random and structural zeros, a projection approach is implemented: a given datum contributes to the estimation of the desired parameters only on the subcompositon where it was observed. For data sets with values below the detection limit, two different approaches are provided: the well-known imputation technique, and also the projection approach. To compute statistics in the presence of outliers, robust statistics are adapted to the characteristics of compositional data, based on the minimum covariance determinant approach. The outlier classification is based on four different models of outlier occur- rence and Monte-Carlo-based tests for their characterization. Furthermore the package provides special plots helping to understand the nature of outliers in the dataset. Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator, robustness, rounded zeros

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El acuerdo militar entre Colombia y los Estados Unidos, la Ley 418 de 1997, la ley 975 de 2005, y la amnistia e indulto como casos de inmunidad de jurisdicción para establecer los títulos de imputación que pueden configurar una responsabilidad del estado patrimonial en Colombia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En una reciente decisión, la Corte Suprema de Justicia Colombiana condenó a un médico por haber prestado sus servicios profesionales a personas pertenecientes a un grupo armado al margen de la Ley. En el presente escrito revisamos ese fallo a la luz de la teoría de la imputación objetiva para diferir de la opinión del Alto Tribunal, por cuanto entendemos que el ejercicio de la medicina jamás constituirá un riesgo desaprobado y éste es un elemento necesario para que pueda hablarse de un delito.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El pasado 16 de marzo de 2011, la Corte Suprema de Justicia se ocupó de un caso donde se califica a un Juez con el delito de falsedad ideológica en documento público. En este fallo se trazaron los lineamientos fundamentales de este delito, mismos que son analizados en el presente escrito para concluir que si bien el resultado del proceso en la Corte −la condena del procesado− es correcto, es necesario superar el entendimiento causal de este delito para interpretarlo de acuerdo con la moderna teoría de la imputación objetiva.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La complejidad que supone abarcar el estudio de la responsabilidad patrimonial del Estado en el ámbito médico sanitario, hace preciso prestar atención a ciertos temas que resultan especialmente relevantes y que han sido decantados jurisprudencialmente por el Honorable Consejo de Estado. De esta manera el presente trabajo desarrolla temas descollantes y novedosos en materia de imputabilidad como viene a ser la prueba de la falla médica mediante la teoría "res ipsa loquitur"; la prueba del nexo causal a través de la prueba indiciaria y la teoría de la probabilidad preponderante. Así mismo se estudian los diversos tipos de daños antijurídicos que pueden darse dentro de la prestación médica a cargo del Estado, destacando especialmente la lesión al derecho a recibir una atención oportuna y eficaz, la pérdida de una oportunidad debida a la no obtención del consentimiento informado del paciente, lo que supone, a su vez, el cercenamiento del derecho de este a elegir someterse o no a determinado tratamiento, previo valoración de pros y contras de la terapia sugerida por el galeno (principio de no agravación). Así mismo se analizanlas hipótesis de daños antijurídicos derivados del error en el diagnóstico, la falla por la omisión de las entidades de control y vigilancia, falla en gineco-obstetricia, así como las hipótesis de responsabilidad objetiva del Estado por óblito quirúrgico, para finalmente tratar el tema novedoso del alea terapéutica con sus particulares características y eventual aplicabilidad en el sistema jurídico colombiano.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical subphenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.761029, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG .20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.761025, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.