953 resultados para Discrete-continuous optimal control problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is directed to examine how far price fluctuations in pepper can be controlled in the Indian context so as to have a reasonable and stable income for the primary producers which will ensure an adequate ‘encouragement for higher production and better export earnings. In a study of the methods of controlling violent price fluctuations a important question is that whether the present system of management of supply is satisfactory or not. It is more so when the demand is likely to be sanimlatsd by the importers and wholesalers of the foreign countries. Though pepper is the most important of all the spices gross in India, little work has been done so far to study the problems and prospects of this commodity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente estudio de caso, se analizan las principales nociones del control fiscal territorial colombiano y se describen los mecanismos de control fiscal introducidos en la ley 1474 de 2011, para observar la pertinencia y conducencia en la solución de los problemas de control fiscal en el departamento de Boyacá; teniendo en cuenta el análisis de los informes de gestión y de resultados de la Contraloría General de Boyacá.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presenta el análisis de sensibilidad de un modelo de percepción de marca y ajuste de la inversión en marketing desarrollado en el Laboratorio de Simulación de la Universidad del Rosario. Este trabajo de grado consta de una introducción al tema de análisis de sensibilidad y su complementario el análisis de incertidumbre. Se pasa a mostrar ambos análisis usando un ejemplo simple de aplicación del modelo mediante la aplicación exhaustiva y rigurosa de los pasos descritos en la primera parte. Luego se hace una discusión de la problemática de medición de magnitudes que prueba ser el factor más complejo de la aplicación del modelo en el contexto práctico y finalmente se dan conclusiones sobre los resultados de los análisis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new self-tuning implicit pole-assignment algorithm is presented which, through the use of a pole compression factor and different RLS model and control structures, overcomes stability and convergence problems encountered in previously available algorithms. Computational requirements of the technique are much reduced when compared to explicit pole-assignment schemes, whereas the inherent robustness of the strategy is retained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded bang-bang solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the authors investigate the use of optimal control techniques for improving the efficiency of the power conversion system in a point absorber wave power device. A simple mathematical model of the system is developed and an optimal control strategy for power generation is determined. They describe an algorithm for solving the problem numerically, provided the incident wave force is given. The results show that the performance of the device is significantly improved with the handwidth of the response being widened by the control strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model Predictive Control (MPC) is a control method that solves in real time an optimal control problem over a finite horizon. The finiteness of the horizon is both the reason of MPC's success and its main limitation. In operational water resources management, MPC has been in fact successfully employed for controlling systems with a relatively short memory, such as canals, where the horizon length is not an issue. For reservoirs, which have generally a longer memory, MPC applications are presently limited to short term management only. Short term reservoir management can be effectively used to deal with fast process, such as floods, but it is not capable of looking sufficiently ahead to handle long term issues, such as drought. To overcome this limitation, we propose an Infinite Horizon MPC (IH-MPC) solution that is particularly suitable for reservoir management. We propose to structure the input signal by use of orthogonal basis functions, therefore reducing the optimization argument to a finite number of variables, and making the control problem solvable in a reasonable time. We applied this solution for the management of the Manantali Reservoir. Manantali is a yearly reservoir located in Mali, on the Senegal river, affecting water systems of Mali, Senegal, and Mauritania. The long term horizon offered by IH-MPC is necessary to deal with the strongly seasonal climate of the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several works in the shopping-time and in the human-capital literature, due to the nonconcavity of the underlying Hamiltonian, use Örst-order conditions in dynamic optimization to characterize necessity, but not su¢ ciency, in intertemporal problems. In this work I choose one paper in each one of these two areas and show that optimality can be characterized by means of a simple aplication of Arrowís (1968) su¢ ciency theorem.