979 resultados para Diagnostic tool
Resumo:
With the advent of high frequency transducers, the use of ocular ultrasound has become widely used because it provides definitions of major ocular structures. This diagnostic tool is useful in the evaluation of ophthalmic injuries, and also used for qualitative and quantitative evaluation of intraocular and orbital lesions. It is a noninvasive, safe and fast, easy to use and can be performed in an awake animal. The ocular ultrasonography is indicated in cases of ocular opacity, when the ophthalmic examination cannot be done, and in eyes with ocular trauma or suspected orbital disease. Ultrasound biomicroscopy (UBM) is a diagnostic tool with high cost and sedation or general anesthesia is necessary, but has the advantage of evaluating structures poorly defined or visualized in the anterior segment of the eye. Therefore, this paper aims to show the importance of ocular ultrasonography and UBM to veterinary practitioners, and to demonstrate its advantages and indications in ophthalmic routine.
Resumo:
In a combustion process involving fossil fuels, there is the formation of species Chemiluminescent, especially CH*, C2* and OH*, whose spontaneous emission can be used as a diagnostic tool. In the present work, mapping and determination of the rotational temperature of the species CH* produced in flames on a burner fueled by Liquefied Petroleum Gas (LPG) was carried out. This study is part of a project involving the characterization of supersonic combustion in scramjets engines, whose study has been conducted in the hypersonic shock tunnel IEAv laboratories. The technique used was the natural emission spectroscopy, which has as main advantage of being non-intrusive. The rotational temperature determination was made using the Boltzmann method, whose principle is to relate the emission intensity of the species to the temperature by means of spectroscopic constants established.The temperature values were determined from the analysis of electronic bands AX and BX of the radical CH*. In order to confirm the results of flame temperatures obtained by the natural emission technique, was also used the technique of line reversal sodium. The results of both techniques showed that the temperature of the flames investigated is about 2500K a 2700K
Resumo:
Monitoring of the kinetics of production of serum antibodies to multiple mycobacterial antigens can be useful as a diagnostic tool for the detection of Mycobacterium bovis infection as well as for the characterization of disease progression and the efficacy of intervention strategies in several species. The humoral immune responses to multiple M. bovis antigens by white-tailed deer vaccinated with BCG orally via a lipid-formulated bait (n = 5), orally in liquid form (n = 5), and subcutaneously (n = 6) were evaluated over time after vaccination and after experimental challenge with virulent M. bovis and were compared to the responses by unvaccinated deer (n = 6). Antibody responses were evaluated by using a rapid test (RT), a multiantigen print immunoassay (MAPIA), a lipoarabinomannan enzyme-linked immunosorbent assay (LAM-ELISA), and immunoblotting to whole-cell sonicate and recombinant antigen MPB83. MAPIA and RT detected minimal to no antibody responses over those at the baseline to multiple M. bovis antigens in vaccinated white-tailed deer after challenge. This was in contrast to the presence of more readily detectable antibody responses in nonvaccinated deer with more advanced disease. The LAM-ELISA results indicated an overall decrease in the level of production of detectable antibodies against lipoarabinomannan-enriched mycobacterial antigen in vaccinated animals compared to that in nonvaccinated animals after challenge. Immunoblot data were inconsistent but did suggest the occurrence of unique antibody responses by certain vaccinated groups to Ag85 and HSP70. These findings support further research toward the improvement and potential use of antibody-based assays, such as MAPIA, RT, and LAM-ELISA, as tools for the antemortem assessment of disease progression in white-tailed deer in both experimental and field vaccine trials.
Resumo:
OBJECTIVE: To analyze major histocompatibility complex expression in the muscle fibers of juvenile and adult dermatomyositis. METHOD: In total, 28 untreated adult dermatomyositis patients, 28 juvenile dermatomyositis patients (Bohan and Peter's criteria) and a control group consisting of four dystrophic and five Pompe's disease patients were analyzed. Routine histological and immunohistochemical (major histocompatibility complex I and II, StreptoABComplex/HRP, Dakopatts) analyses were performed on serial frozen muscle sections. Inflammatory cells, fiber damage, perifascicular atrophy and increased connective tissue were analyzed relative to the expression of major histocompatibility complexes I and II, which were assessed as negatively or positively stained fibers in 10 fields (200X). RESULTS: The mean ages at disease onset were 42.0 +/- 15.9 and 7.3 +/- 3.4 years in adult and juvenile dermatomyositis, respectively, and the symptom durations before muscle biopsy were similar in both groups. No significant differences were observed regarding gender, ethnicity and frequency of organ involvement, except for higher creatine kinase and lactate dehydrogenase levels in adult dermatomyositis (p<0.050). Moreover, a significantly higher frequency of major histocompatibility complex I (96.4% vs. 50.0%, p<0.001) compared with major histocompatibility complex II expression (14.3% vs. 53.6%, p = 0.004) was observed in juvenile dermatomyositis. Fiber damage (p = 0.006) and increased connective tissue (p<0.001) were significantly higher in adult dermatomyositis compared with the presence of perifascicular atrophy (p<0.001). The results of the histochemical and histological data did not correlate with the demographic data or with the clinical and laboratory features. CONCLUSION: The overexpression of major histocompatibility complex I was an important finding for the diagnosis of both groups, particularly for juvenile dermatomyositis, whereas there was lower levels of expression of major histocompatibility complex II than major histocompatibility complex I. This finding was particularly apparent in juvenile dermatomyositis.
Resumo:
Benesi F.J., Wachholz L., Bertagnon H.G., Leal M.L.R., Mori E. & Fernandes W.R. 2012. [Cytology of tracheobronchial and bronchoalveolar lavage in healthy Holteins calves during the first month of life.] Citologia dos lavados traqueobronquico (LTB) e broncoalveolar (LBA) de bezerros holandeses sadios durante o primeiro mes de vida. Pesquisa Veterinaria Brasileira 32(3):267-270. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Sao Paulo, SP 05508-270, Brazil. E-mail: febencli@usp.br The neonatal calf is a critical moment for adaptation of the newborn to extra uterine life. The respiratory tract is functionally very demanded and often affected by disease, resulting in direct loss of their function and causing serious economic losses in livestock. The basic point to reduce these losses is appropriate clinical evaluation of neonates; but the diagnosis based solely in physical examination is very difficult to establish. The use of complementary analysis such cytology of the respiratory tract becomes an important diagnostic tool; however their findings must be standardized in the face of different techniques employed. This research studied the dynamics of the cellularity of the bronchoalveolar and tracheobronchial region obtained through lung lavage harvested by nasotracheal catheterization technique and tracheocenthesis respectively, during the first month of life of healthy calves. The tracheobronchial cytology was influenced by the time, showing decreased number of alveolar macrophages and greater number of neutrophils, possibly increased by local irritation caused by the technique, which was repeated sequentially, and/or through greater stimulation of inhaled microorganisms deposited in this region. In the bronchoalveolar region no variation in the cellular constituents in function of time was found. The results allowed the conclusion the cell population of the tracheobronchial region has changed over the week-old calves, possibly due to the technique used and/or to the normal region physiology, represented by higher magnitudes of neutrophils. Otherwise, the cells of the broncholaveolar region showed a stable behavior during the first month of life of newborn calves, presenting numerical predominance of alveolar macrophages. O período neonatal dos bezerros é um momento crítico para adaptação do recém-nascido à vida extra uterina e o sistema respiratório, um dos mais exigidos funcionalmente, é frequentemente afetado por enfermidades, redundando no prejuízo direto da sua função e acarretando perdas econômicas importantes na pecuária. O ponto básico para reduzir estas perdas, é representado pela adequada avaliação clínica dos neonatos, todavia o diagnóstico baseado exclusivamente no exame ísico é muito di ícil de ser estabelecido. O uso de exames complementares como a citologia do trato respiratório torna-se uma ferramenta diagnóstica importante nestes casos, porém faz-se necessário, padronizar seus achados frente às diferentes técnicas empregadas para a sua obtenção. Assim, o presente estudo propôs-se acompanhar as variações dos constituintes celulares da região traqueobrônquica e broncoalveolar obtidos por lavados respiratórios pelos métodos de traqueocentese e por colheita nasotraqueal respectivamente, durante o primeiro mês de vida de bezerros sadios. Observou-se alteração no quadro citológico ao longo do tempo, quando a região traqueobrônquica foi lavada, expresso por diminuição da porcentagem de macrófagos alveolares, com aumento de neutró ilos, possivelmente, por maior irritação local provocada pela técnica, que se repetiu sequencialmente e/ou por maior estimulo de microorganismos inalados depositados nesta região. Na região broncoalveolar, não encontraram- -se variações nos constituintes celulares em função do tempo. Os resultados permitiram a conclusão que a população celular da região traqueobrônquica modi icou-se ao longo das semanas de vida dos bezerros, possivelmente pela técnica empregada e/ou isiologia normal da região, sendo representadas por maiores magnitudes de neutró ilos. De modo diverso, na região broncolaveolar, as células evidenciaram um comportamento estável durante o primeiro mês de vida dos bezerros neonatos, apresentando predomínio numérico dos macrófagos alveolares.
Resumo:
The relationship between fluoride (F) concentrations in toenails and prevalence of caries using the International Caries Detection and Assessment System (ICDAS-II) criteria was evaluated. Fifty-four children (4-13 years of age) from Rio de Janeiro, Brazil, had their teeth surfaces examined and toenails clipped and analyzed for F. Toenail F concentrations in children presenting ICDAS-II <= 10 or >10 were compared by unpaired t test with Welch correction. Dichotomized data were analyzed by Fisher's exact test. Children presenting ICDAS-II <= 10 (n=23) had 1.85 +/- 1.32 (Mean +/- SD) mu g/g [F]; these values were higher than children having ICDAS-II>10 (n=31), whose toenails had 1.58 +/- 0.78 mu g/g [F], a nonsignificant difference. The sensitivity and specificity of toenail F concentrations in identifying children with ICDAS-II <= 10 were 0.22 and 0.77, respectively. We conclude that children with low caries prevalence tend to have higher toenail F concentrations, but the validity of this biomarker as a diagnostic tool for caries prevalence is low, possibly owing to the fact that the mechanism of action of F on caries control appears to be essentially topical.
Resumo:
Purpose: The methodology currently used for interpretation of the cornea and anterior segment tomography for the diagnosis of corneal ectasia and its susceptibility. Methods: Description of the methodology and clinical interpretation of corneal and anterior segment tomography indexes; report of three cases demonstrating the importance of this new diagnostic tool (Pentacam HR (R)) in ophthalmological practice. Conclusion: The use of corneal and anterior segment tomography seems to be an effective method to increase the sensitivity and specificity for the diagnosis and early detection of corneal ectasia.
Resumo:
Purpose: Two-millimeter punch biopsy is a swift and practical diagnostic tool in the outpatient setting. However, few studies have evaluated the efficacy of the method for diagnosis of malignant eyelid tumors. Methods: This was an observational study of patients with suspicion of malignant eyelid tumor attending the Ocular Plastic Surgery Center at Hospital das Clinicas, University of Sao Paulo School of Medicine. Following standard procedures, preoperative biopsies were taken with a 2-mm trephine and surgical excision was performed with safety margins, followed by reconstruction. Anatomopathologic analysis of the surgical specimen was used as gold standard to evaluate the accuracy of diagnosis by punch biopsy. Results: The study included 50 periocular tumors with suspicion of malignancy. The indicators of efficacy in the identification of malignancy by 2-mm punch biopsy were: sensitivity 88%, specificity 100%, positive predictive value 100%, and negative predictive value 64%. Accuracy was 90% for malignancy and 80% for histologic type. The. index of agreement between the diagnostic methods was 0.722 (p < 0.001). Conclusion: A positive result with 2-mm punch biopsy is a safe indication for surgical excision of the tumor, whereas a negative result does not necessarily imply benignity. In cases of high clinical suspicion, a second biopsy should be taken from a different part of the tumor to rule out malignancy. (Ophthal Plast Reconstr Surg 2012;28:282-285)
Resumo:
Abstract Background Bronchial challenge tests are used to evaluate bronchial responsiveness in diagnosis and follow-up of asthmatic patients. Challenge induced cough has increasingly been recognized as a valuable diagnostic tool. Various stimuli and protocols have been employed. The aim of this study was to compare cough and dyspnea intensity induced by different stimuli. Methods Twenty asthmatic patients underwent challenge tests with methacholine, bradykinin and exercise. Cough was counted during challenge tests. Dyspnea was assessed by modified Borg scale and visual analogue scale. Statistical comparisons were performed by linear mixed-effects model. Results For cough evaluation, bradykinin was the most potent trigger (p < 0.01). In terms of dyspnea measured by Borg scale, there were no differences among stimuli (p > 0.05). By visual analogue scale, bradykinin induced more dyspnea than other stimuli (p ≤ 0.04). Conclusion Bradykinin seems to be the most suitable stimulus for bronchial challenge tests intended for measuring cough in association with bronchoconstriction.
Resumo:
The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
The use of Magnetic Resonance Imaging (MRI) as a diagnostic tool is increasingly employing functional contrast agents to study or contrast entire mechanisms. Contrast agents in MRI can be classified in two categories. One type of contrast agents alters the NMR signal of the protons in its surrounding, e.g. lowers the T1 relaxation time. The other type enhances the Nuclear Magnetic Resonance (NMR) signal of specific nuclei. For hyperpolarized gases the NMR signal is improved up to several orders of magnitude. However, gases have a high diffusivity which strongly influences the NMR signal strength, hence the resolution and appearance of the images. The most interesting question in spatially resolved experiments is of course the achievable resolution and contrast by controlling the diffusivity of the gas. The influence of such diffusive processes scales with the diffusion coefficient, the strength of the magnetic field gradients and the timings used in the experiment. Diffusion may not only limit the MRI resolution, but also distort the line shape of MR images for samples, which contain boundaries or diffusion barriers within the sampled space. In addition, due to the large polarization in gaseous 3He and 129Xe, spin diffusion (different from particle diffusion) could play a role in MRI experiments. It is demonstrated that for low temperatures some corrections to the NMR measured diffusion coefficient have to be done, which depend on quantum exchange effects for indistinguishable particles. Physically, if these effects can not change the spin current, they can do it indirectly by modifying the velocity distribution of the different spin states separately, so that the subsequent collisions between atoms and therefore the diffusion coefficient can eventually be affected. A detailed study of the hyperpolarized gas diffusion coefficient is presented, demonstrating the absence of spin diffusion (different from particle diffusion) influence in MRI at clinical conditions. A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. The experimental measured diffusion agrees with theoretical simulations. Therefore, the molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this allows for images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.
On the development of novel cocaine-analogues for in vivo imaging of the dopamine transporter status
Resumo:
The present thesis is concerned with the development of novel cocaine-derived dopamine transporter ligands for the non-invasive exploration of the striatal and extra-striatal dopamine transporter (DAT) in living systems. The presynaptic dopamine transporter acquires an important function within the mediation of dopaminergic signal transduction. Its availability can serve as a measure for the overall integrity of the dopaminergic system. The DAT is upregulated in early Parkinson’s disease (PD), resulting in an increased availability of DAT-binding sites in the striatal DAT domains. Thereby, DAT imaging has become an important routine diagnostic tool for the early diagnosis of PD in patients, as well as for the differentiation of PD from symptomatically similar medical conditions. Furthermore, the dopaminergic system is involved in a variety of psychiatric diseases. In this regard, DAT-selective imaging agents may provide detailed insights into the scientific understanding of the biochemical background of both, the progress as well as the origins of the symptoms. DAT-imaging may also contribute to the determination of the dopaminergic therapeutic response for a given medication and thereby contribute to more convenient conditions for the patient. From an imaging point of view, the former demands a high availability of the radioactive probe to facilitate broad application of the modality, whereas the latter profits from short-lived probes, suitable for multi-injection studies. Therefore, labelling with longer-lived 18F-fluoride and in particular the generator nuclide 68Ga is worthwhile for clinical routine imaging. In contrast, the introduction of a 11C-label is a prerequisite for detailed scientific studies of neuronal interactions. The development of suitable DAT-ligands for medical imaging has often been complicated by the mixed binding profile of many compounds that that interact with the DAT. Other drawbacks have included high non-specific binding, extensive metabolism and slow accumulation in the DAT-rich brain areas. However, some recent examples have partially overcome the mentioned complications. Based on the structural speciality of these leads, novel ligand structures were designed and successfully synthesised in the present work. A structure activity relationship (SAR) study was conducted wherein the new structural modifications were examined for their influence on DAT-affinity and selectivity. Two of the compounds showed improvements in in vitro affinity for the DAT as well as selectivity versus the serotonin transporter (SERT) and norepinephrine transporter (NET). The main effort was focussed on the high-affinity candidate PR04.MZ, which was subsequently labelled with 18F and 11C in high yield. An initial pharmacological characterisation of PR04.MZ in rodents revealed highly specific binding to the target brain structures. As a result of low non-specific binding, the DAT-rich striatal area was clearly visualised by autoradiography and µPET. Furthermore, the radioactivity uptake into the DAT-rich brain regions was rapid and indicated fast binding equilibrium. No radioactive metabolite was found in the rat brain. [18F]PR04.MZ and [11C]PR04.MZ were compared in the primate brain and the plasma metabolism was studied. It was found that the ligands specifically visualise the DAT in high and low density in the primate brain. The activity uptake was rapid and quantitative evaluation by Logan graphical analysis and simplified reference tissue model was possible after a scanning time of 30 min. These results further reflect the good characteristics of PR04.MZ as a selective ligand of the neuronal DAT. To pursue 68Ga-labelling of the DAT, initial synthetic studies were performed as part of the present thesis. Thereby, a concept for the convenient preparation of novel bifunctional chelators (BFCs) was developed. Furthermore, the suitability of novel 1,4,7-triazacyclononane based N3S3-type BFCs for biomolecule-chelator conjugates of sufficient lipophilicity for the penetration of the blood-brain-barrier was elucidated.
Resumo:
L’ecografia del tratto gastroenterico è una delle metodiche d’elezione nella valutazione diagnostica delle patologie gastrointestinali nel gatto. In questa tesi dottorale sono presentati i risultati di tre studi in cui l’ecografia convenzionale e con mezzo di contrasto è stata impiegata in gatti sani o con patologie gastroenteriche. Lo scopo del primo studio, prospettico, è stato quello di determinare lo spessore ecografico dei singoli strati di parete nell’intestino tenue in una popolazione di gatti sani. Lo strato mucoso è risultato significativamente più spesso nel duodeno e nel digiuno, per la maggiore grandezza dei villi in queste porzioni dell’intestino tenue. A livello dell’ileo, gli strati di maggior spessore sono risultati quello sottomucoso, per l’abbondante presenza di aggregati linfoidi, e quello muscolare, a causa delle caratteristiche anatomo-funzionali di sfintere che questo tratto intestinale svolge. Il secondo progetto, retrospettivo, nasce dalla collaborazione tra due centri universitari, uno italiano e uno americano, con l’obiettivo di confrontare lo spessore della tonaca muscolare intestinale in gatti affetti da Inflammatory Bowel disease (IBD) o da neoplasie intestinali. In questo studio, l’ipertrofia della tonaca muscolare (ITM) è stato maggiormente osservato in gatti con IBD rispetto a gatti con neoplasie intestinali, ma non sono state evidenziate differenze di spessore della tonaca muscolare tali da poter differenziare le due patologie. Lo scopo del terzo progetto, prospettico, è stato quello di descrivere il pattern di perfusione parietale del piccolo intestino, valutato mediante uso di mezzo di contrasto ecografico, in gatti con ITM associata a IBD. In tutti gli animali studiati, l’ITM si è associato a una modesta assunzione del mezzo di contrasto rispetto agli altri strati della parete intestinale. Questi risultati confermano che l’ITM che si osserva in gatti con IBD non è associato a significativi aumenti della vascolarizzazione di tale strato parietale.
Resumo:
Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.