825 resultados para Deuterium Oxide
Resumo:
There is an imminent need for rapid methods to detect and determine pathogenic bacteria in food products as alternatives to the laborious and time-consuming culture procedures. In this work, an electrochemical immunoassay using iron/gold core/shell nanoparticles (Fe@Au) conjugated with anti-Salmonella antibodies was developed. The chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles is reported. Fe@Au nanoparticles were functionalized with different self-assembled monolayers and characterized using ultraviolet-visible spectrometry, transmission electron microscopy, and voltammetric techniques. The determination of Salmonella typhimurium, on screen-printed carbon electrodes, was performed by square-wave anodic stripping voltammetry through the use of CdS nanocrystals. The calibration curve was established between 1×101 and 1×106 cells/mL and the limit of detection was 13 cells/mL. The developed method showed that it is possible to determine the bacteria in milk at low concentrations and is suitable for the rapid (less than 1 h) and sensitive detection of S. typhimurium in real samples. Therefore, the developed methodology could contribute to the improvement of the quality control of food samples.
Resumo:
Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 x 10(-1) Omega*cm and decreases down to 6.9 x 10(-3) Omega*cm as the annealing temperature is increased up to 500 degrees C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.
Resumo:
A new fluorescent sensor for nitric oxide (NO) is presented that is based on its reaction with a non fluorescent substance, reduced fluoresceinamine, producing the highly fluorescent fluoresceinamine. Using a portable homemade stabilized light source consisting of 450 nm LED and fiber optics to guide the light, the sensor responds linearly within seconds in the NO concentration range between about 10–750 µM with a limit of detection (LOD) of about 1 µM. The system generated precise intensity readings, with a relative standard deviation of less than 1%. The suitability of the sensor was assessed by monitoring the NO generated by either the nitrous acid decomposition reaction or from a NO-releasing compound. Using relatively high incubation times, the sensor also responds quantitatively to hydrogen peroxide and potassium superoxide, however, using transient signal measurements results in no interfering species.
Resumo:
Journal of Applied Physics, Vol. 96, nº3
Resumo:
Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nanotechnologies and Nanosciences by Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia
Resumo:
Optically transparent cocatalyst film materials is very desirable for improved photoelectrochemical (PEC)oxygen evolution reaction (OER) over light harvesting photoelectrodes which require the exciting light to irradiate through the cocatalyst side, i.e., front-side illumination. In view of the reaction overpotential at electrode/electrolyte interface, the OER electrocatalysts have been extensively used as cocatalysts for PEC water oxidation on photoanode. In this work, the feasibility of a one-step fabrication of the transparent thin film catalyst for efficient electrochemical OER is investigated. The Ni-Fe bimetal oxide films, 200 nm in thickness, are used for study. Using a reactive magnetron co-sputtering technique, transparent(> 50% in wavelength range 500-2000 nm) Ni-Fe oxide films with high electrocatalytic activities were successfully prepared at room temperature. Upon optimization, the as-prepared bimetal oxide film with atomic ratio of Fe/Ni = 3:7 demonstrates the lowest overpotential for the OER in aqueous KOH solution, as low as 329 mV at current density of 2 mA cm 2, which is 135 and 108 mV lower than that of as-sputtered FeOx and NiOx thin films, respectively. It appears that this fabrication strategy is very promising to deposit optically transparent cocatalyst films on photoabsorbers for efficient PEC water splitting.
Resumo:
Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.
Resumo:
Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa
Resumo:
Paracoccidioidomycosis is a chronic granulomatous disease that induces a specific inflammatory and immune response. The participation of nitric oxide (NO), a product of the inducible nitric oxide synthase enzyme (iNOS), as an important fungicidal molecule against Paracoccidioides brasiliensis has been demonstrated. In order to further characterize the Oral Paracoccidioidomycosis (OP), we undertook an immunohistochemical study of iNOS+, CD45RO+, CD3+, CD8+, CD20+, CD68+ cells and mast cells. The samples were distributed in groups according to the number of viable fungi per mm². Our results showed weak immunolabeling for iNOS in the multinucleated giant cells (MNGC) and in most of the mononuclear (MN) cells, and the proportion of iNOS+ MN/MNGC cells in the OP were comparable to Control (clinically healthy oral tissues). Additionally, our analysis revealed a similarity in the number of CD4+ cells between the Control and the OP groups with higher numbers of fungi. These findings suggest that a low expression of iNOS and a decrease in the CD4+ T cells in OP may represent possible mechanisms that permit the local fungal multiplication and maintenance of active oral lesions.
Resumo:
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.
Resumo:
Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.
Resumo:
Anogenital lichen sclerosus is a chronic, inflammatory, mucocutaneous disorder of significant morbidity. Common symptoms include pruritus, pain, dysuria, and dyspareunia, frequently of difficult control. Photodynamic therapy (PDT) may be an effective therapeutic option in selected cases refractory to first--‐line treatment options. However, procedure--‐related pain is a limiting factor in patient adherence to treatment. Conscious sedation and analgesia with a ready--‐to--‐use gas mixture of nitrous oxide and oxygen is useful in short--‐term procedures. It provides a rapid, effective, and short--‐lived effect, without the need for anesthesiology support. A 75--‐year--‐old woman presented with a highly symptomatic, histologically confirmed vulvar lichen sclerosus, with at least 15 years of evolution. Pain, pruritus, and dysuria were intense and disabling. Treatment with ultrapotent topical corticosteroids proved to be ineffective despite patient compliance. She was then referred for PDT. A total of 3 sessions were performed, held at a mean interval of 9 weeks, and under the analgesic and sedative effect of nitrous oxide/oxygen gas. Response to treatment was evaluated through a daily, self--‐reported pain rating scale. Dysuria remitted completely after the first PDT session. An 80% reduction in pruritus and pain was observed after the third session, and has been sustained for the past six months without further need for topical corticotherapy. Treatment sessions were well tolerated and pain-- free, with no side effects to report. PDT appears to be effective in the symptomatic treatment of vulvar lichen sclerosus. To the authors’ knowledge this is the first case reporting the use of inhaled nitrous oxide/oxygen gas mixture during PDT performed in the genital area. Its analgesic and sedative effects may increase patients’ adherence to this painful procedure. Furthermore, given its safety, it can be easily managed in outpatient clinics by trained dermatologists.