964 resultados para Deuteric fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on pressure drop were obtained in stainless steel, sanitary fittings and valves during laminar and turbulent flow of aqueous suspensions of sucrose and bentonite. The rheological properties of these suspensions were determined and the Bingham model provided the best fitting with the experimental data. Friction losses were measured in fully- and partially-open butterfly and plug valves, bends and union. Values of loss coefficients (k(f)) were calculated and correlated as functions of the classical Reynolds number and the Reynolds number proposed by Govier and Aziz (1972) for viscoplastic fluids. The two-k method and a new proposed model presented the best adjustments for the Govier and Aziz Reynolds number, and Hedstrom and classical Reynolds numbers, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes results of the photo-degradation of three types of soluble and emulsive cutting fluids in an aqueous medium, using TiO2 as catalyst in suspension and UV radiation. The TiO2 proved to be an effective catalyst for the degradation of the cutting fluids investigated. The degradation rate depends on pH and nature of the fluids. The best performance of catalyst was observed at pH 8.0 for all the fluids when most of 70% of the organic load was decomposed. ©2006 Sociedade Brasileira de Química.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose: The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6-sulfatoxymelatonin (a6MTs) in urine, is a defining feature of suprachiasmatic nucleus (SCN) function, the body's endogenous oscillatory pacemaker. The primary objective of this review is to ascertain the clinical benefits and limitations of current methodologies employed for detection and quantification of melatonin in biological fluids and tissues. Data Identification: A search of the English-language literature (Medline) and a systematic review of published articles were carried out. Study Selection: Articles that specified both the methodology for quantifying melatonin and indicated the clinical purpose were chosen for inclusion in the review. Data Extraction: The authors critically evaluated the methodological issues associated with various tools and techniques (e.g. standards, protocols, and procedures). Results of Data Synthesis: Melatonin measurements are useful for evaluating problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. They have also become an important tool for psychiatric diagnosis, their use being recommended for phase typing in patients suffering from sleep and mood disorders. Additionally, there has been a continuous interest in the use of melatonin as a marker for neoplasms of the pineal region. Melatonin decreases such as found with aging are or post pinealectomy can cause alterations in the sleep/wake cycle. The development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids has increasingly been shown to have direct relevance for clinical decision making. Conclusions: Due to melatonin's low concentration, as well as the coexistence of numerous other compounds in the blood, the routine determination of melatonin has been an analytical challenge. The available evidence indicates however that these challenges can be overcome and consequently that evaluation of melatonin's presence and activity can be an accessible and useful tool for clinical diagnosis. © Springer-Verlag 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731-743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the turbulent flow of the Non-Newtonian Carreau-Yasuda fluid will be studied. A skin friction equation for the turbulent flow of Carreau-Yasuda fluids will be derived assuming a logarithmic behavior of the turbulent mean velocity for the near wall flow out of the viscous sub layer. An alternative near wall characteristic length scale which takes into account the effects of the relaxation time will be introduced. The characteristic length will be obtained through the analysis of viscous region near the wall. The results compared with experimental data obtained with Tylose (methyl hydroxil cellulose) solutions showing good agreement. The relations between scales integral and dissipative obtained for length, time, velocity, kinetic energy, and vorticity will be derived for this type of fluid. When the power law index approach to unity the relations reduces to Newtonian case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: The thermal entry region in laminar forced convection of Herschel-Bulkley fluids is solved analytically through the integral transform technique, for both circular and parallel-plates ducts, which are maintained at a prescribed wall temperature or at a prescribed wall heat flux. The local Nusselt numbers are obtained with high accuracy in both developing and fully-developed thermal regions, and critical comparisons with previously reported numerical results are performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Related momentum and energy equations describing the heat and fluid flow of Herschel-Bulkley fluids within concentric annular ducts are analytically solved using the classical integral transform technique, which permits accurate determination of parameters of practical interest in engineering such as friction factors and Nusselt numbers for the duct length. In analyzing the problem, thermally developing flow is assumed and the duct walls are subjected to boundary conditions of first kind. Results are computed for the velocity and temperature fields as well as for the parameters cited above with different power-law indices, yield numbers and aspect ratios. Comparisons are also made with previous work available in the literature, providing direct validation of the results and showing that they are consistent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A second-order closure is developed for predicting turbulent flows of viscoelastic fluids described by a modified generalised Newtonian fluid model incorporating a nonlinear viscosity that depends on a strain-hardening Trouton ratio as a means to handle some of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by comparing its predictions for fully developed turbulent pipe flow with experimental data for four different dilute polymeric solutions and also with two sets of direct numerical simulation data for fluids theoretically described by the finitely extensible nonlinear elastic - Peterlin model. The model is based on a Newtonian Reynolds stress closure to predict Newtonian fluid flows, which incorporates low Reynolds number damping functions to properly deal with wall effects and to provide the capability to handle fluid viscoelasticity more effectively. This new turbulence model was able to capture well the drag reduction of various viscoelastic fluids over a wide range of Reynolds numbers and performed better than previously developed models for the same type of constitutive equation, even if the streamwise and wall-normal turbulence intensities were underpredicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the study of an attractive interfacial wave for application in ultrasonic NDE techniques for inspection and fluid characterization. This wave, called quasi-Scholte mode, is a kind of flexural wave in a plate in contact with a fluid which presents a good sensitivity to the fluid properties. In order to explore this feature, the phase velocity curve of quasi-Scholte mode is experimentally measured in a plate in contact with a viscous fluid, showing a good agreement with theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.