960 resultados para Design for Manufacturing (DFM)
Resumo:
In a just-in-time, assemble-to-order production environments the scheduling of material requirements and production tasks - even though difficult - is of paramount importance. Different enterprise resource planning solutions with master scheduling functionality have been created to ease this problem and work as expected unless there is a problem in the material flow. This case-based candidate’s thesis introduces a tool for Microsoft Dynamics AX multisite environment, that can be used by site managers and production coordinators to get an overview of the current open sales order base and prioritize production in the event of material shortouts to avoid part-deliveries.
Resumo:
European luxury brands have an image of manufacturing their products in the same country where the brands originate. However, in the past years many luxury brands have shifted their manufacturing to countries outside Europe. China is now a common manufacturing country for European luxury brands despite the country’s poor image as a manufacturer. Chinese manufacturing is often associated with bad quality, bad labour conditions, mass production, and counterfeits. The image of China does not quite match the image luxury brands enjoy including characteristics such as high end quality, craftsmanship, details, design, or premium price. A negatively perceived country-of-manufacture may have an effect on a brand’s image and consumers’ purchase decisions. This thesis is focused on European luxury brands manufacturing in China, and how this effects the brand image and purchase decisions among luxury consumers. The empirical part of this thesis is based on focus group research, which is a popular method in the field of qualitative research. The main focus group is female luxury consumers in Finland. This main group has been divided into three categories: 1) the university students, 2) the young career women, 3) the experienced luxury consumers. This categorization has been done based on their different stages in luxury consumption. All in all, the empirical research consisted of 11 interviews and 29 participants. The main contribution of this thesis was that there is a difference between the opinions of the younger groups (university students and young career women) and the experienced luxury consumers when discussing the effect of country-of-manufacture on brand image and purchase decisions of luxury brands. The younger participants thought that manufacturing luxury products in China might affect the brand image, but their purchase decisions would not be that much affected by the country-of-origin. The experienced luxury consumers had quite a different view on the country-of-origin of luxury brands – they found it an important decisive factor prior making purchases. The majority of experienced luxury consumers would not buy luxury products made in China, and they would always check where these products are made in.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
The focus of the research is on the derivation of the valid and reliable performance results regarding establishment and launching of the new full-scale industrial facility, considering the overall current conditions for the project realization in and out of Russia. The study demonstrates the process of the new facility concept development, with following perfor-mance calculation, comparative analyzes conduction, life-cycle simulations, performance indicators derivation and project`s sustainability evaluation. To unite and process the entire input parameters complexity, regards the interlacing between the project`s internal technical and commercial sides on the one hand, and consider all the specifics of the Russian conditions for doing business on the other hand, was developed the unique model for the project`s performance calculation, simulations and results representation. The complete research incorporates all corresponding data to substantiate the assigned facility`s design, sizing and output capacity for high quality and cost efficient ferrous pipe-line accessories manufacturing, as well as, demonstrates that this project could be suc-cessfully realized in current conditions in Russia and highlights the room for significant performance and sustainability improvements based on the indexes of the derived KPIs.
Resumo:
Utilization of light and illumination systems in automotive industry for different purposes has been increased significantly in recent years. Volvo as one of the leading companies in manufacturing of luxury cars has found the great capacity in this area. The performance of such an illumination systems is one of the challenges that engineers in this industry are facing with. In this study an effort has been made to design a system to make the iron mark of Volvo being illuminated and the system is being evaluated by optics simulation in software using Ray optics method. At the end, results are assessed and some optimizations are carried out. Different kind of light guides, front side of the iron mark and some possible arrangement for LED also evaluated and different materials tested. The best combination from uniformity, color and amount of luminance aspect selected as a possible solution for this special project which can be used as a base for further studies in Volvo.
Resumo:
The overall objective of the thesis is to design a robot chassis frame which is a bearing structure of a vehicle supporting all mechanical components and providing structure and stability. Various techniques and scientific principles were used to design a chassis frame.Design principles were applied throughout the process. By using Solid-Works software,virtual models was made for chassis frame. Chassis frame of overall dimension 1597* 800*950 mm3 was designed. Center of mass lieson 1/3 of the length from front wheel at height 338mm in the symmetry plane. Overall weight of the chassis frame is 80.12kg. Manufacturing drawing is also provided. Additionally,structural analysis was done in FEMAP which gives the busting result for chassis design by taking into consideration stress and deflection on different kind of loading resembling real life case. On the basis of simulated result, selected material was verified. Resulting design is expected to perform its intended function without failure. As a suggestion for further research, additional fatigue analysis and proper dynamic analysis can be conducted to make the study more robust.
Resumo:
The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.
Resumo:
La pratique du design industriel dans la province canadienne de l’Alberta est en pleine croissance. Ses activités sont principalement concentrées à Edmonton et à Calgary, qui sont les plus grandes villes de la province. On y trouve des studios de design de renom, des communautés de design complexes et des programmes universitaires de design bien établis. Cependant, la pratique du design industriel albertaine est sous-développée en comparaison avec celle du reste du Canada et il y a peu de recherches et de documentation sur le design industriel en Alberta. Dans ce projet de mémoire, la pratique du design industriel en Alberta a été explorée depuis une approche historique. Pour pallier le manque de documentation, la collecte de données a été faite par une recherche qualitative, des entretiens narratifs et une recherche quantitative statistique. Une base d’information historique sur le design industriel albertain a été établie puis située par rapport au développement de la pratique du design industriel ailleurs au Canada. Les facteurs, événements et tendances dans l’histoire de la pratique du design industriel en Alberta ont été identifiés. De plus, le développement de la pratique du design industriel de l’Alberta a été comparé à celui du Québec et de l’Ontario. Les retombées de cette étude indiquent que la pratique du design industriel en Alberta présente quatre domaines de spécialisations distincts se développant depuis les années 1980. La pratique du design industriel en Alberta est sous-développée en comparaison à celui du Québec et de l’Ontario, mais elle peut devenir plus compétitive, au niveau canadien, avec plus de soutien gouvernemental, de meilleures relations avec l’industrie manufacturière et les institutions académiques, une communauté de design plus unifiée et en portant une plus grande attention aux domaines les plus prometteurs de l’industrie. Ces informations supportent une meilleure compréhension de la pratique du design industriel en Alberta et pourront informer les praticiens, enseignants et administrateurs du domaine du design industriel dans la province. Finalement, le mémoire servira de base à d’autres projets de recherche sur les changements potentiels dans la pratique du design industriel en Alberta et l’étude du design canadien et des industries de design régionales.
Resumo:
The Manufacturing Systems team was one of the research teams within the Lean Aerospace Initiative (LAI) whose goal was to document, analyze and communicate the design attributes and relationships that lead to significant performance improvements in manufacturing systems in the defense aerospace industry. This report will provide an integrated record of this research using the Production Operations Transition to Lean Roadmap as its organizing framework.
Resumo:
The technologies and methodologies of assembly design and evaluation in the early design stage are highly significant to product development. This paper looks at a promising technology to mix real components (e.g. physical prototypes, assembly tools, machines, etc.) with virtual components to create an Augmented Reality (AR) interface for assembly process evaluation. The goal of this paper is to clarify the methodologies and enabling technologies of how to establish an AR assembly simulation and evaluation environment. The architecture of an AR assembly system is proposed and the important functional modules including AR environment set-up, design for assembly (DFA) analysis and AR assembly sequence planning in an AR environment are discussed in detail.
Resumo:
This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.
Resumo:
By enhancing a real scene with computer generated objects, Augmented Reality (AR), has proven itself as a valuable Human-Computer Interface (HCI) in numerous application areas such as medical, military, entertainment and manufacturing. It enables higher performance of on-site tasks with seamless presentation of up-to-date, task-related information to the users during the operation. AR has potentials in design because the current interface provided by Computer-aided Design (CAD) packages is less intuitive and reports show that the presence of physical objects help design thinking and communication. This research explores the use of AR to improve the efficiency of a design process, specifically in mechanical design.
Resumo:
Most logistics network design models assume exogenous customer demand that is independent of the service time or level. This paper examines the benefits of segmenting demand according to lead-time sensitivity of customers. To capture lead-time sensitivity in the network design model, we use a facility grouping method to ensure that the different demand classes are satisfied on time. In addition, we perform a series of computational experiments to develop a set of managerial insights for the network design decision making process.
Resumo:
Performance and manufacturability are two important issues that must be taken into account during MEMS design. Existing MEMS design models or systems follow a process-driven design paradigm, that is, design starts from the specification of process sequence or the customization of foundry-ready process template. There has been essentially no methodology or model that supports generic, high-level design synthesis for MEMS conceptual design. As a result, there lacks a basis for specifying the initial process sequences. To address this problem, this paper proposes a performance-driven, microfabrication-oriented methodology for MEMS conceptual design. A unified behaviour representation method is proposed which incorporates information of both physical interactions and chemical/biological/other reactions. Based on this method, a behavioural process based design synthesis model is proposed, which exploits multidisciplinary phenomena for design solutions, including both the structural components and their configuration for the MEMS device, as well as the necessary substances for the chemical/biological/other reactions. The model supports both forward and backward synthetic search for suitable phenomena. To ensure manufacturability, a strategy of using microfabrication-oriented phenomena as design knowledge is proposed, where the phenomena are developed from existing MEMS devices that have associated MEMS-specific microfabrication processes or foundry-ready process templates. To test the applicability of the proposed methodology, the paper also studies microfluidic device design and uses a micro-pump design for the case study.
Resumo:
This lab follows the lectures 'System Design: http://www.edshare.soton.ac.uk/6280/ http://www.edshare.soton.ac.uk/9653/ and http://www.edshare.soton.ac.uk/9713/ Students use Visual Paradigm for UML to build Class models through project examples: Aircraft Manufacturing Company, Library, Plant Nursery.