546 resultados para Dermal melanophores


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Borrelial infection is characterized by various skin manifestations that are usually classified into three main types: chronic migratory erythema, borrelial lymphocytoma and acrodermatitis chronica atrophicans. We report an unusual case of borrelial cutaneous infection presenting as a mediofacial erythema that cannot be included in any of these three categories. CASE REPORT: A 51-year-old woman presented with infiltrated erythema of the middle of the face extending to the neck and chin. Medical history and physical examination revealed no signs of rosaceae. Infection with Borrelia was suspected on skin biopsy examination, which showed an inflammatory dermal infiltrate containing numerous plasma cells. The diagnosis of B.afzelii infection was confirmed by serology and polymerase chain reaction on the skin biopsy, both of which were positive for B.afzelii. DISCUSSION: Borrelial erythema of the face may represent a special form of cutaneous borrelial infection, which must be considered in the differential diagnosis of facial erythema, especially in areas of endemic borreliosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: This study was undertaken to investigate how aging affects dermal microvascular reactivity in skin areas differentially exposed to sunlight, and therefore to different degrees of photoaging. METHODS: We assessed, in young (18-30 years, n = 13) and aged males (≥60 years, n = 13), the thigh, forearm, and forehead's skin vasodilatory response to local heating (LTH) with a LDI. In each subject and at each location, local Tskin was brought from 34°C (baseline) to 39 or 41°C for 30 minutes, to effect submaximal vasodilation, with maximal vasodilation then elicited by further heating to 44°C. RESULTS: The CVCs evaluated at baseline and after maximal vasodilation (CVCmax ) were higher in the forehead than in the two other anatomical locations. On all locations, CVCmax decreased with age but less markedly in the forehead compared to the two other locations. When expressed in % of CVCmax , the plateau increase of CVCs in response to submaximal temperatures (39 and 41°C) did not vary with age, and minimally so with location. CONCLUSION: Skin aging, whether intrinsic or combined with photoaging, reduces the maximal vasodilatory capacity of the dermal microcirculation, but not its reactivity to local heating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A clinicopathologic case of a 41-year-old female patient exhibited a single cutaneous tumor at the inner part of the free margin of the inferior left eyelid. It was a pink, fleshy, and nodular well-circumscribed exophytic mass with thin vessels on its surface. Experienced already for 20 years, this lesion had been observed 6 years before and has not exhibited much change since then. However, its clinical appearance argued for a possible small basal cell carcinoma, which had grown over the inferior left lachrymal duct. After surgical removal, histopathology showed that the tumor was an amelanotic dermal nevus. No disturbance of lachrymal drainage was observed after surgery. This case shows that nodular amelanotic tumors of the eyelid, even when located on the inner segment of the eyelid, may be a nevus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Leri's pleonosteosis (LP) is an autosomal dominant rheumatic condition characterised by flexion contractures of the interphalangeal joints, limited motion of multiple joints, and short broad metacarpals, metatarsals and phalanges. Scleroderma-like skin thickening can be seen in some individuals with LP. We undertook a study to characterise the phenotype of LP and identify its genetic basis. METHODS AND RESULTS: Whole-genome single-nucleotide polymorphism genotyping in two families with LP defined microduplications of chromosome 8q22.1 as the cause of this condition. Expression analysis of dermal fibroblasts from affected individuals showed overexpression of two genes, GDF6 and SDC2, within the duplicated region, leading to dysregulation of genes that encode proteins of the extracellular matrix and downstream players in the transforming growth factor (TGF)-β pathway. Western blot analysis revealed markedly decreased inhibitory SMAD6 levels in patients with LP. Furthermore, in a cohort of 330 systemic sclerosis cases, we show that the minor allele of a missense SDC2 variant, p.Ser71Thr, could confer protection against disease (p<1×10(-5)). CONCLUSIONS: Our work identifies the genetic cause of LP in these two families, demonstrates the phenotypic range of the condition, implicates dysregulation of extracellular matrix homoeostasis genes in its pathogenesis, and highlights the link between TGF-β/SMAD signalling, growth/differentiation factor 6 and syndecan-2. We propose that LP is an additional member of the growing 'TGF-β-pathies' group of musculoskeletal disorders, which includes Myhre syndrome, acromicric dysplasia, geleophysic dysplasias, Weill-Marchesani syndromes and stiff skin syndrome. Identification of a systemic sclerosis-protective SDC2 variant lays the foundation for exploration of the role of syndecan-2 in systemic sclerosis in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Remodeling of quiescent vessels with increases in permeability, vasodilatation, and edema are hallmarks of inflammatory disorders. Factors involved in this type of remodeling represent potential therapeutic targets. OBJECTIVES: We investigated whether the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) β/δ, a regulator of metabolism, fibrosis, and skin homeostasis, is involved in regulation of this type of remodeling. METHODS: Wild-type and various Pparb/d mutant mice were used to monitor dermal acute vascular hyperpermeability (AVH) and passive systemic anaphylaxis-induced hypothermia and edema. PPARβ/δ-dependent kinase activation and remodeling of endothelial cell-cell junctions were addressed by using human endothelial cells. RESULTS: AVH and dilatation of dermal microvessels stimulated by vascular endothelial growth factor A, histamine, and thrombin are severely compromised in PPARβ/δ-deficient mice. Selective deletion of the Pparb/d-encoding gene in endothelial cells in vivo similarly limits dermal AVH and vasodilatation, providing evidence that endothelial PPARβ/δ is the major player in regulating acute dermal microvessel remodeling. Furthermore, endothelial PPARβ/δ regulatory functions are not restricted to the skin vasculature because its deletion in the endothelium, but not in smooth muscle cells, also leads to reduced systemic anaphylaxis, the most severe form of allergic reaction, in which an acute vascular response plays a key role. PPARβ/δ-dependent AVH activation likely involves the activation of mitogen-activated protein kinase and Akt pathways and leads to downstream destabilization of endothelial cell-cell junctions. CONCLUSION: These results unveil not only a novel function of PPARβ/δ as a direct regulator of acute vessel permeability and dilatation but also provide evidence that antagonizing PPARβ/δ represents an important strategy to consider for moderating diseases with altered endothelial integrity, such as acute inflammatory and allergic disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. PPARγ is involved in many different activities in the epidermis, such as keratinocyte differentiation, permeability barrier recovery, dermal wound closure, sebaceous gland formation, sebocyte differentiation, and melanogenesis. Preclinical studies with PPARγ ligands on various skin diseases have been performed and they could represent a new strategy in the treatment of scarring alopecia. PPARγ deserves further studies as therapeutic target, likely not with the current drugs, but with future new classes of safer molecules and in combined therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: The aim of our study was to compare traumatic injuries observed after cardiopulmonary resuscitation (CPR) by means of standard (manual) or assisted (mechanical) chest compression by Lund University Cardiopulmonary Assist System, 2nd generation (LUCAS?2) device. METHODS: A retrospective study was conducted including cases from 2011 to 2013, analysing consecutive autopsy reports in two groups of patients who underwent medicolegal autopsy after unsuccessful CPR. We focused on traumatic injuries from dermal to internal trauma, collecting data according to a standardised protocol. RESULTS: The study group was comprised of 26 cases, while 32 cases were included in the control group. Cardiopulmonary resuscitation performed by LUCAS?2 was longer than manual CPR performed in control cases (study group: mean duration 51.5 min; controls 29.4 min; p = 0.004). Anterior chest lesions (from bruises to abrasions) were described in 18/26 patients in the LUCAS?2 group and in 6/32 of the control group. A mean of 6.6 rib fractures per case was observed in the LUCAS?2 group, but this was only 3.1 in the control group (p = 0.007). Rib fractures were less frequently observed in younger patients. The frequency of sternal factures was similar in both groups. A few trauma injuries to internal organs (mainly cardiac, pulmonary and hepatic bruises), and some petechiae (study 46 %; control 41 %; p = 0.79) were recorded in both groups. CONCLUSION: LUCAS?2-CPR is associated with more rib fractures than standard CPR. Typical round concentric skin lesions were observed in cases of mechanical reanimation. No life-threatening injuries were reported. Petechiae were common findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stromal fibroblast senescence has been linked to ageing-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAFs) are frequently increased. Loss or downmodulation of the Notch effector CSL (also known as RBP-Jκ) in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumours. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as a direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is downmodulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas, whereas p53 expression and function are downmodulated only in the latter, with paracrine FGF signalling as the probable culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation-stromal co-evolution model under convergent CSL-p53 control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stromal fibroblast senescence has been linked to the aging-associated increase of tumors. However, in epithelial cancer, density and proliferation of cancer associated fibroblasts (CAF) are frequently increased, rather than decreased. We previously showed that genetic deletion or down-modulation of the canonical Notch effector CSL/RBP-JK in dermal fibroblasts is sufficient for CAF activation with consequent development of keratinocyte-derived tumors. We show here that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 gene expression and function is down-modulated only in the latter, with paracrine influences of incipient cancer cells as a likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances CAF effector gene expression and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control of likely clinical relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Mycosis Fungoides (MF) is the most common cutaneous T-cell lymphoma, and large cell trasformation (tMF) is an adverse prognostic event. Extra-cutaneous dissemination can occur in the course of the disease, but dissemination to the central nervous system (CNS) is uncommon. Moreover, CNS lymphomas are overall rare and most often of B-cell phenotype. We report a case of CNS large T-cell lymphoma presenting as multiple cerebral lesions in a patient with a history of MF. Methods. We report a case of a 33-year-old woman, known since the age of 16 for erythematous plaques thought to be atopic dermatitis, who developed, end 2012, multiple nodular skin lesions and peripheral adenopathies. Two skin lesions were biopsied simultaneously, and diagnosed as MF and tMF. A lymph node biopsy showed dermatopathic changes without lymphoma (Stage IIB). She received local treatment (UVB, PUVA and radiation therapy) and interferon therapy, and experienced almost complete remission. In 2015 neurological symptoms lead to evidence multiple cerebral lesions, suspicious for lymphoma, evaluated by stereotaxic biopsies. We compared histopathological and molecular features of these with previous skin specimens. After negative bone marrow staging biopsy, she was recently started on chemotherapy (MATRIX). Short follow-up shows rapidly worsening clinical conditions. Results. One of the initial skin biopsies showed atypical lymphoid cells with epidermotropism, Pautrier abcesses and CD4+ CD30- phenotype; the other revealed diffuse dermal infiltration by predominantly large cerebriform tumor cells with high proliferative fraction, and CD2−CD3 −CD4+/−CD7−CD30+ALK- EMA- non-cytotoxic immunophenotype. Altogether, these results led us to diagnose MF and tMF, respectively. The brain was infiltrated by large atypical lymphoid cells with cerebriform nuclei, somewhat anaplastic features and perivascular distribution. By immunohistochemistry, tumor cells were highly proliferative, with a CD2−CD3+CD5−CD7+CD30+ activated cytotoxic immunophenotype. A diagnosis of CD30+ cytotoxic peripheral T-cell lymphoma was retained. TRG and TRB clonality analyses revealed clonal rearrangements in skin and CNS biopsies, with identical patterns in both skin specimens but only minimally overlapping profiles when compared to the CNS sample. Der Pathologe 6 ? 2015 | 633 Conclusions. The reported case illustrates an uncommon finding of a CNS T-cell lymphoma in a patient with previous MF, questioning the clonal relationship between the two diseases and challenging the adequate classification of this CNS lymphoma as either a progression or a de novo lymphoma. Despite differences in immunophenotype and clonality patterns, this CNS lymphoma could possibly represent an aggressive divergent evolution of a primary cutaneous T-cell lymphoma. Additional sequencing is ongoing to try to solve the question.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CSL is a key transcription factor, mostly acting as a repressor, which has been shown to have a highly context-dependent function. While known as the main effector of Notch signaling, it can also exert Notch-independent functions. The downstream effects of the Notch/CSL signaling pathway and its involvement in several biological processes have been intensively studied. We recently showed that CSL is important to maintain skin homeostasis, as its specific deletion in mouse dermal fibroblasts -or downmodulation in human stromal fibroblasts- creates an inducing environment for squamous cell carcinoma (SCC) development, possibly due to the conversion of stromal fibroblasts into cancer associated fibroblasts (CAFs). Despite the wide interest in CSL as a transcriptional regulator, the mechanism of its own regulation has so far been neglected. We show here that CSL expression levels differ between individuals, and correlate among others with genes involved in DNA damage response. Starting from this finding we show that in dermal fibroblasts CSL is under transcriptional control of stress inducers such as UVA irradiation and Reactive Oxygen Species (ROS) induction, and that a main player in CSL transcriptional regulation is the transcription factor p53. In a separate line of work, we focused on individual variability, studying the differences in gene expression between human populations in various cancer types, particularly focusing on the Caucasian and African populations. It is indeed widely known that these populations have different incidences and mortalities for various cancers, and response to cancer treatment may also vary between them. We show here several genes that are differentially expressed and could be of interest in the study of population differences in cancer. -- CSL est un facteur de transcription agissant essentiellement comme répresseur, et qui a une fonction hautement dépendant du contexte. C'est l'effecteur principal de la voie de signalisation de Notch, mais il peut également exercer ses fonctions dans une façon Notch- indépendante. Nous avons récemment montré que CSL est important pour maintenir l'homéostasie de la peau. Sa suppression spécifique dans les fibroblastes dermiques de la souris ou dans les fibroblastes stromales humaines crée un environnement favorable pour le développement du carcinome épidermoïde (SCC), probablement en raison de la conversion des fibroblastes en fibroblastes associé au cancer (CAF). Malgré le grand intérêt de CSL comme régulateur transcriptionnel, le mécanisme de sa propre régulation a été jusqu'ici négligée. Nous montrons ici que dans les fibroblastes dermiques CSL est sous le contrôle transcriptionnel de facteurs de stress tels que l'irradiation UVA et l'induction des ROS dont p53 est l'acteur principal de cette régulation. Nous montrons aussi que les niveaux d'expression de CSL varient selon les individus, en corrélation avec d'autres gènes impliqués dans la réponse aux dommages de l'ADN. Dans une autre axe de recherche, concernant la variabilité individuelle, nous avons étudié les différences dans l'expression des gènes dans différents types de cancer entre les populations humaines, en se concentrant particulièrement sur les populations africaines et caucasiennes. Il est en effet bien connu que ces populations montrent des variations dans l'incidence des cancers, la mortalité, ainsi que pour les réponses au traitement. Nous montrons ici plusieurs gènes qui sont exprimés différemment et pourraient être digne d'intérêt dans l'étude du cancer au sein de différentes populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Occupational hygiene practitioners typically assess the risk posed by occupational exposure by comparing exposure measurements to regulatory occupational exposure limits (OELs). In most jurisdictions, OELs are only available for exposure by the inhalation pathway. Skin notations are used to indicate substances for which dermal exposure may lead to health effects. However, these notations are either present or absent and provide no indication of acceptable levels of exposure. Furthermore, the methodology and framework for assigning skin notation differ widely across jurisdictions resulting in inconsistencies in the substances that carry notations. The UPERCUT tool was developed in response to these limitations. It helps occupational health stakeholders to assess the hazard associated with dermal exposure to chemicals. UPERCUT integrates dermal quantitative structure-activity relationships (QSARs) and toxicological data to provide users with a skin hazard index called the dermal hazard ratio (DHR) for the substance and scenario of interest. The DHR is the ratio between the estimated 'received' dose and the 'acceptable' dose. The 'received' dose is estimated using physico-chemical data and information on the exposure scenario provided by the user (body parts exposure and exposure duration), and the 'acceptable' dose is estimated using inhalation OELs and toxicological data. The uncertainty surrounding the DHR is estimated with Monte Carlo simulation. Additional information on the selected substances includes intrinsic skin permeation potential of the substance and the existence of skin notations. UPERCUT is the only available tool that estimates the absorbed dose and compares this to an acceptable dose. In the absence of dermal OELs it provides a systematic and simple approach for screening dermal exposure scenarios for 1686 substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-κB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.