995 resultados para Depth, reference
Resumo:
Ice loss from the marine-based, potentially unstable West Antarctic Ice Sheet (WAIS) contributes to current sea-level rise and may raise sea level by up to 3.3 to 5 meters in the future. Over the past few decades, glaciers draining the WAIS into the Amundsen Sea Embayment (ASE) have shown accelerated ice flow, rapid thinning and grounding-line retreat. However, the long-term context of this ice-sheet retreat is poorly constrained, limiting our ability to accurately predict future WAIS behaviour. Here we present a new chronology for WAIS retreat from the inner continental shelf of the eastern ASE based on radiocarbon dates from three marine sediment cores. The ages document a retreat of the grounding line to within ~93 km of its modern position before 11.7±0.7 kyr BP (thousand years before present). This early deglaciation is consistent with ages for grounding-line retreat from the western ASE. Our new data demonstrate that, other than in the Ross Sea, WAIS retreat in the ASE has not continued progressively since the Last Glacial Maximum. Furthermore, our results suggest that the grounding-line position in the ASE was predominantly stable throughout the Holocene, and that any episodes of fast retreat similar to that observed today must have been short-lived. Alternatively, today's rapid retreat was unprecedented during the Holocene. Therefore, the current ice loss must originate in recent changes in regional climate, ocean circulation or ice-sheet dynamics. Incorporation of these results into models is essential to produce robust predictions of future ice-sheet change and its contribution to sea-level rise.
Resumo:
More than 50 discrete volcanic ash layers were recovered at the five drill sites of the Blake Nose depth transect (Leg 171B, western central Atlantic). The majority of these ash layers are intercalated with Eocene hemipelagic sediments with a pronounced frequency maximum in the upper Eocene. Several ash layers appear to be deposited from volcanic fallout with little or no indication of secondary remobilization. They provide excellent stratigraphic markers for a correlation of the Leg 171B drill sites. Other ash layers were probably redeposited from volcaniclastic-rich turbidity currents, but they still represent geologically instantaneous events that can be used in stratigraphic correlation between adjacent drill holes. Additional nonvolcanic marker beds, like the suspect late Eocene impact event layer, were included in our hole-to-hole correlations. Stratigraphic and downcore positions of marker beds were compiled and plotted against existing composite depth records that were constructed to guide high-resolution sampling. Comparison of our correlation with the spliced composite sections of each drill site reveals several minor and some major discrepancies. These may result from drilling distortion or missing sections, from the lack of unambiguous criteria for the synchronism of ash layers, or from the systematic exclusion of marker-bed data in the construction of the spliced record. Integration of both correlation approaches will help eliminate most of the observed discrepancies.
Resumo:
Thermokarst lakes and basins are major components of ice-rich permafrost landscapes in East Siberian coastal lowlands and are regarded as indicators of regional climatic changes. We investigate the temporal and spatial dynamics of a 7.5 km**2, partly drained thermokarst basin (alas) using field investigations, remote sensing, Geographic Information Systems (GIS), and sediment analyses. The evolution of the thermokarst basin proceeded in two phases. The first phase started at the Pleistocene/Holocene transition (13 to 12 ka BP) with the initiation of a primary thermokarst lake on the Ice Complex surface. The lake expanded and persisted throughout the early Holocene before it drained abruptly about 5.7 ka BP, thereby creating a > 20 m deep alas with residual lakes. The second phase (5.7 ka BP to present) is characterized by alternating stages of lower and higher thermokarst intensity within the alas that were mainly controlled by local hydrological and relief conditions and accompanied by permafrost aggradation and degradation. It included diverse concurrent processes like lake expansion and stepwise drainage, polygonal ice-wedge growth, and the formation of drainage channels and a pingo, which occurred in different parts of the alas. This more dynamic thermokarst evolution resulted in a complex modern thermokarst landscape. However, on the regional scale, the changes during the second evolutionary phase after drainage of the initial thermokarst lakes were less intense than the early Holocene extensive thermokarst development in East Siberian coastal lowlands as a result of a significant regional change to warmer and wetter climate conditions.
Resumo:
The early Eocene represents a time of major changes in the global carbon cycle and fluctuations in global temperatures on both short- and long-time scales. These perturbations of the ocean-atmosphere system have been linked to orbital forcing and changes in net organic carbon burial, but accurate age models are required to disentangle the various forcing mechanisms and assess causal relationships. Discrepancies between the employed astrochronological and radioisotopic dating techniques prevent the construction of a robust time frame between ~49 and ~54 Ma. Here we present an astronomically tuned age model for this critical time period based on a new high-resolution benthic d13C record of ODP Site 1263, SE Atlantic. First, we assess three possible tuning options to the stable long-eccentricity cycle (405-kyr), starting from Eocene Thermal Maximum 2 (ETM2, ~54 Ma). Next we compare our record to the existing bulk carbonate d13C record from the equatorial Atlantic (Demerara Rise, ODP Site 1258) to evaluate our three initial age models and compare them with alternative age models previously established for this site. Finally, we refine our preferred age model by expanding our tuning to the 100-kyr eccentricity cycle of the La2010d solution. This solution appears to accurately reflect the long- and short-term eccentricity-related patterns in our benthic d13C record of ODP Site 1263 back to at least 52 Ma and possibly to 54 Ma. Our time scale not only aims to provide a new detailed age model for this period, but it may also serve to enhance our understanding of the response of the climate system to orbital forcing during this super greenhouse period as well as trends in its background state.