844 resultados para Data mining and knowledge discovery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the PANACEA ICT-2007.2.2 EU project is to build a platform that automates the stages involved in the acquisition,production, updating and maintenance of the large language resources required by, among others, MT systems. The development of a Corpus Acquisition Component (CAC) for extracting monolingual and bilingual data from the web is one of the most innovative building blocks of PANACEA. The CAC, which is the first stage in the PANACEA pipeline for building Language Resources, adopts an efficient and distributed methodology to crawl for web documents with rich textual content in specific languages and predefined domains. The CAC includes modules that can acquire parallel data from sites with in-domain content available in more than one language. In order to extrinsically evaluate the CAC methodology, we have conducted several experiments that used crawled parallel corpora for the identification and extraction of parallel sentences using sentence alignment. The corpora were then successfully used for domain adaptation of Machine Translation Systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract OBJECTIVE Check the relationship between the users' contact time in educational programs and self-care and knowledge variables in diabetes mellitus. METHOD A longitudinal study with a quantitative approach with the participation, in the initial phase, of 263 users linked to Basic Health Units in Belo Horizonte, Brazil during the years 2012 and 2013. The data were collected with respect to the total contact time of the users' participation in the educational program as regards knowledge and self-care in acquired diabetes mellitus. The data were analyzed using the Student t-test for comparison of means, considering a 0.05 significance level. RESULTS The final sample included 151 users. The analysis showed that the improvement in self-care scores was statistically higher during an educational intervention of eight hours or more (p-value <0.05). In relation to the scores for knowledge, there was a statistically significant improvement at the end of the educational program. It was not possible to identify a value for the contact time from which there was an increase in mean scores for the ability of knowledge. CONCLUSION To improve the effectiveness of the promotion of skills related to knowledge and self-care in diabetes mellitus, it is necessary to consider the contact time as a relevant factor of the educational program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many classifiers achieve high levels of accuracy but have limited applicability in real world situations because they do not lead to a greater understanding or insight into the^way features influence the classification. In areas such as health informatics a classifier that clearly identifies the influences on classification can be used to direct research and formulate interventions. This research investigates the practical applications of Automated Weighted Sum, (AWSum), a classifier that provides accuracy comparable to other techniques whilst providing insight into the data. This is achieved by calculating a weight for each feature value that represents its influence on the class value. The merits of this approach in classification and insight are evaluated on a Cystic Fibrosis and Diabetes datasets with positive results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master's thesis coversthe concepts of knowledge discovery, data mining and technology forecasting methods in telecommunications. It covers the various aspects of knowledge discoveryin data bases and discusses in detail the methods of data mining and technologyforecasting methods that are used in telecommunications. Main concern in the overall process of this thesis is to emphasize the methods that are being used in technology forecasting for telecommunications and data mining. It tries to answer to some extent to the question of do forecasts create a future? It also describes few difficulties that arise in technology forecasting. This thesis was done as part of my master's studies in Lappeenranta University of Technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn tarkoituksena oli kerätä käyttövarmuustietoa savukaasulinjasta kahdelta suomalaiselta sellutehtaalta niiden käyttöönotosta aina tähän päivään asti. Käyttövarmuustieto koostuu luotettavuustiedoista sekä kunnossapitotiedoista. Kerätyn tiedon avulla on mahdollista kuvata tarkasti laitoksen käyttövarmuutta seuraavilla tunnusluvuilla: suunnittelemattomien häiriöiden lukumäärä ja korjausajat, laitteiden seisokkiaika, vikojen todennäköisyys ja korjaavan kunnossapidon kustannukset suhteessa savukaasulinjan korjaavan kunnossapidon kokonaiskustannuksiin. Käyttövarmuustiedon keräysmetodi on esitelty. Savukaasulinjan kriittisten laitteiden määrittelyyn käytetty metodi on yhdistelmä kyselytutkimuksesta ja muunnellusta vian vaikutus- ja kriittisyysanalyysistä. Laitteiden valitsemiskriteerit lopulliseen kriittisyysanalyysiin päätettiin käyttövarmuustietojen sekä kyselytutkimuksen perusteella. Kriittisten laitteiden määrittämisen tarkoitus on löytää savukaasulinjasta ne laitteet, joiden odottamaton vikaantuminen aiheuttaa vakavimmat seuraukset savukaasulinjan luotettavuuteen, tuotantoon, turvallisuuteen, päästöihin ja kustannuksiin. Tiedon avulla rajoitetut kunnossapidon resurssit voidaan suunnata oikein. Kriittisten laitteiden määrittämisen tuloksena todetaan, että kolme kriittisintä laitetta savukaasulinjassa ovat molemmille sellutehtaille yhteisesti: savukaasupuhaltimet, laahakuljettimet sekä ketjukuljettimet. Käyttövarmuustieto osoittaa, että laitteiden luotettavuus on tehdaskohtaista, mutta periaatteessa samat päälinjat voidaan nähdä suunnittelemattomien vikojen todennäköisyyttä esittävissä kuvissa. Kustannukset, jotka esitetään laitteen suunnittelemattomien kunnossapitokustannusten suhteena savukaasulinjan kokonaiskustannuksiin, noudattelevat hyvin pitkälle luotettavuuskäyrää, joka on laskettu laitteen seisokkiajan suhteena käyttötunteihin. Käyttövarmuustiedon keräys yhdistettynä kriittisten laitteiden määrittämiseen mahdollistavat ennakoivan kunnossapidon oikean kohdistamisen ja ajoittamisen laitteiston elinaikana siten, että luotettavuus- ja kustannustehokkuusvaatimukset saavutetaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the challenges of pig farming in today's competitive market, there is factor of the product traceability that ensures, among many points, animal welfare. Vocalization is a valuable tool to identify situations of stress in pigs, and it can be used in welfare records for traceability. The objective of this work was to identify stress in piglets using vocalization, calling this stress on three levels: no stress, moderate stress, and acute stress. An experiment was conducted on a commercial farm in the municipality of Holambra, São Paulo State , where vocalizations of twenty piglets were recorded during the castration procedure, and separated into two groups: without anesthesia and local anesthesia with lidocaine base. For the recording of acoustic signals, a unidirectional microphone was connected to a digital recorder, in which signals were digitized at a frequency of 44,100 Hz. For evaluation of sound signals, Praat® software was used, and different data mining algorithms were applied using Weka® software. The selection of attributes improved model accuracy, and the best attribute selection was used by applying Wrapper method, while the best classification algorithms were the k-NN and Naive Bayes. According to the results, it was possible to classify the level of stress in pigs through their vocalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to identify differences in swine vocalization pattern according to animal gender and different stress conditions. A total of 150 barrow males and 150 females (Dalland® genetic strain), aged 100 days, were used in the experiment. Pigs were exposed to different stressful situations: thirst (no access to water), hunger (no access to food), and thermal stress (THI exceeding 74). For the control treatment, animals were kept under a comfort situation (animals with full access to food and water, with environmental THI lower than 70). Acoustic signals were recorded every 30 minutes, totaling six samples for each stress situation. Afterwards, the audios were analyzed by Praat® 5.1.19 software, generating a sound spectrum. For determination of stress conditions, data were processed by WEKA® 3.5 software, using the decision tree algorithm C4.5, known as J48 in the software environment, considering cross-validation with samples of 10% (10-fold cross-validation). According to the Decision Tree, the acoustic most important attribute for the classification of stress conditions was sound Intensity (root node). It was not possible to identify, using the tested attributes, the animal gender by vocal register. A decision tree was generated for recognition of situations of swine hunger, thirst, and heat stress from records of sound intensity, Pitch frequency, and Formant 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This pilot project aims examine the factors of the Finnish subsidiaries local embeddedness, their knowledge creation capabilities and the transfer mechanisms of new practices in the context of the Russian market. The research is designed as a multiple case study conducted with a qualitative approach. The empirical data consists of the interviews of the four Finnish case companies operating in the Kaluga region and three local partner companies. The deductive and inductive approaches were employed to conduct the analysis of the data. The propositions for the future study were developed in the conclusive chapters of the research, where we propose that the factor of the economy growth and industrialization matters in terms of subsidiaries’ role dedication, their knowledge creation capabilities, and direction of the knowledge flow within the local environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choice of industrial development options and the relevant allocation of the research funds become more and more difficult because of the increasing R&D costs and pressure for shorter development period. Forecast of the research progress is based on the analysis of the publications activity in the field of interest as well as on the dynamics of its change. Moreover, allocation of funds is hindered by exponential growth in the number of publications and patents. Thematic clusters become more and more difficult to identify, and their evolution hard to follow. The existing approaches of research field structuring and identification of its development are very limited. They do not identify the thematic clusters with adequate precision while the identified trends are often ambiguous. Therefore, there is a clear need to develop methods and tools, which are able to identify developing fields of research. The main objective of this Thesis is to develop tools and methods helping in the identification of the promising research topics in the field of separation processes. Two structuring methods as well as three approaches for identification of the development trends have been proposed. The proposed methods have been applied to the analysis of the research on distillation and filtration. The results show that the developed methods are universal and could be used to study of the various fields of research. The identified thematic clusters and the forecasted trends of their development have been confirmed in almost all tested cases. It proves the universality of the proposed methods. The results allow for identification of the fast-growing scientific fields as well as the topics characterized by stagnant or diminishing research activity.