856 resultados para Data Driven Clustering
Resumo:
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess cognitive symptoms in prHD and early HD individuals.
Resumo:
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess functional impact in day-to-day activities in prHD and early HD individuals.
Resumo:
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess "Anger and Irritability" and "Obsessions and Compulsions" in prHD individuals.
Resumo:
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess Depression, Anxiety and Apathy in prHD and early HD individuals.
Resumo:
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess functional impact of motor manifestations in prHD and early HD individuals.
Resumo:
Hocaoglu MB, Gaffan EA, Ho AK. The Huntington's disease health-related quality of life questionnaire: a disease-specific measure of health-related quality of life. Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by motor, cognitive and psychiatric disturbances, and yet there is no disease-specific patient-reported health-related quality of life outcome measure for patients. Our aim was to develop and validate such an instrument, i.e. the Huntington's Disease health-related Quality of Life questionnaire (HDQoL), to capture the true impact of living with this disease. Semi-structured interviews were conducted with the full spectrum of people living with HD, to form a pool of items, which were then examined in a larger sample prior to data-driven item reduction. We provide the statistical basis for the extraction of three different sets of scales from the HDQoL, and present validation and psychometric data on these scales using a sample of 152 participants living with HD. These new patient-derived scales provide promising patient-reported outcome measures for HD.
Resumo:
Current methods for estimating event-related potentials (ERPs) assume stationarity of the signal. Empirical Mode Decomposition (EMD) is a data-driven decomposition technique that does not assume stationarity. We evaluated an EMD-based method for estimating the ERP. On simulated data, EMD substantially reduced background EEG while retaining the ERP. EMD-denoised single trials also estimated shape, amplitude, and latency of the ERP better than raw single trials. On experimental data, EMD-denoised trials revealed event-related differences between two conditions (condition A and B) more effectively than trials lowpass filtered at 40 Hz. EMD also revealed event-related differences on both condition A and condition B that were clearer and of longer duration than those revealed by low-pass filtering at 40 Hz. Thus, EMD-based denoising is a promising data-driven, nonstationary method for estimating ERPs and should be investigated further.
Resumo:
This contribution introduces a new digital predistorter to compensate serious distortions caused by memory high power amplifiers (HPAs) which exhibit output saturation characteristics. The proposed design is based on direct learning using a data-driven B-spline Wiener system modeling approach. The nonlinear HPA with memory is first identified based on the B-spline neural network model using the Gauss-Newton algorithm, which incorporates the efficient De Boor algorithm with both B-spline curve and first derivative recursions. The estimated Wiener HPA model is then used to design the Hammerstein predistorter. In particular, the inverse of the amplitude distortion of the HPA's static nonlinearity can be calculated effectively using the Newton-Raphson formula based on the inverse of De Boor algorithm. A major advantage of this approach is that both the Wiener HPA identification and the Hammerstein predistorter inverse can be achieved very efficiently and accurately. Simulation results obtained are presented to demonstrate the effectiveness of this novel digital predistorter design.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
Effective public policy to mitigate climate change footprints should build on data-driven analysis of firm-level strategies. This article’s conceptual approach augments the resource-based view (RBV) of the firm and identifies investments in four firm-level resource domains (Governance, Information management, Systems, and Technology [GISTe]) to develop capabilities in climate change impact mitigation. The authors denote the resulting framework as the GISTe model, which frames their analysis and public policy recommendations. This research uses the 2008 Carbon Disclosure Project (CDP) database, with high-quality information on firm-level climate change strategies for 552 companies from North America and Europe. In contrast to the widely accepted myth that European firms are performing better than North American ones, the authors find a different result. Many firms, whether European or North American, do not just “talk” about climate change impact mitigation, but actually do “walk the talk.” European firms appear to be better than their North American counterparts in “walk I,” denoting attention to governance, information management, and systems. But when it comes down to “walk II,” meaning actual Technology-related investments, North American firms’ performance is equal or superior to that of the European companies. The authors formulate public policy recommendations to accelerate firm-level, sector-level, and cluster-level implementation of climate change strategies.
Resumo:
Empirical mode decomposition (EMD) is a data-driven method used to decompose data into oscillatory components. This paper examines to what extent the defined algorithm for EMD might be susceptible to data format. Two key issues with EMD are its stability and computational speed. This paper shows that for a given signal there is no significant difference between results obtained with single (binary32) and double (binary64) floating points precision. This implies that there is no benefit in increasing floating point precision when performing EMD on devices optimised for single floating point format, such as graphical processing units (GPUs).
Resumo:
Empirical Mode Decomposition (EMD) is a data driven technique for extraction of oscillatory components from data. Although it has been introduced over 15 years ago, its mathematical foundations are still missing which also implies lack of objective metrics for decomposed set evaluation. Most common technique for assessing results of EMD is their visual inspection, which is very subjective. This article provides objective measures for assessing EMD results based on the original definition of oscillatory components.
Resumo:
We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation.
Resumo:
Nonlinear data assimilation is high on the agenda in all fields of the geosciences as with ever increasing model resolution and inclusion of more physical (biological etc.) processes, and more complex observation operators the data-assimilation problem becomes more and more nonlinear. The suitability of particle filters to solve the nonlinear data assimilation problem in high-dimensional geophysical problems will be discussed. Several existing and new schemes will be presented and it is shown that at least one of them, the Equivalent-Weights Particle Filter, does indeed beat the curse of dimensionality and provides a way forward to solve the problem of nonlinear data assimilation in high-dimensional systems.
Resumo:
A challenge for the clinical management of Parkinson's disease (PD) is the large within- and between-patient variability in symptom profiles as well as the emergence of motor complications which represent a significant source of disability in patients. This thesis deals with the development and evaluation of methods and systems for supporting the management of PD by using repeated measures, consisting of subjective assessments of symptoms and objective assessments of motor function through fine motor tests (spirography and tapping), collected by means of a telemetry touch screen device. One aim of the thesis was to develop methods for objective quantification and analysis of the severity of motor impairments being represented in spiral drawings and tapping results. This was accomplished by first quantifying the digitized movement data with time series analysis and then using them in data-driven modelling for automating the process of assessment of symptom severity. The objective measures were then analysed with respect to subjective assessments of motor conditions. Another aim was to develop a method for providing comparable information content as clinical rating scales by combining subjective and objective measures into composite scores, using time series analysis and data-driven methods. The scores represent six symptom dimensions and an overall test score for reflecting the global health condition of the patient. In addition, the thesis presents the development of a web-based system for providing a visual representation of symptoms over time allowing clinicians to remotely monitor the symptom profiles of their patients. The quality of the methods was assessed by reporting different metrics of validity, reliability and sensitivity to treatment interventions and natural PD progression over time. Results from two studies demonstrated that the methods developed for the fine motor tests had good metrics indicating that they are appropriate to quantitatively and objectively assess the severity of motor impairments of PD patients. The fine motor tests captured different symptoms; spiral drawing impairment and tapping accuracy related to dyskinesias (involuntary movements) whereas tapping speed related to bradykinesia (slowness of movements). A longitudinal data analysis indicated that the six symptom dimensions and the overall test score contained important elements of information of the clinical scales and can be used to measure effects of PD treatment interventions and disease progression. A usability evaluation of the web-based system showed that the information presented in the system was comparable to qualitative clinical observations and the system was recognized as a tool that will assist in the management of patients.