969 resultados para DUAL-PHASE STEELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of composition and processing schedule on the microstructure of C-Mn-Si-Mo-(Al)-(Nb) steels containing nano-bainite was studied using transmission electron microscopy (TEM) and atom probe tomography (APT). The major phase formed in all steels was nano-bainite. However, the steels with lower carbon and alloying addition content subjected to TMP had better mechanical properties than high alloyed steel after isothermal treatment. The presence of ferrite in the microstructure can improve not only ductility but lead to the formation of retained austenite with optimum chemical stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collaboration between TAFE (vocational colleges) and universities in Australia in construction management has been problematic, with exchanges between the two sectors limited to linear articulation and prescribed credit transfer. Articulation pathways have traditionally been viewed as the poor relation of university entry. In 2005, the first pilot project in dual sector construction education was conducted at RMIT University in Melbourne. Higher education students completed electives in practical units within the TAFE sector. Due to the overwhelming success of the project, practical electives were firmly embedded in the construction management programme in 2007 and this paper reports on the third, final phase of the project in 2009 which has seen construction management students graduate with a dual qualification – both a TAFE qualification and a Higher Education degree. The case studies of this final phase reveal that students and industry want the benefits of a practical qualification. The data raises critical questions about education pathways and suggests long-term implications for construction and dual sector education in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing academic relationships between vocational colleges and universities in Australia has been problematic, with exchanges between the two sectors limited to linear articulation and prescribed credit transfer. Whilst some very good examples of collaboration exist, the two sectors generally operate independently of each other. The isolation of the sectors has meant frustration for students and employers who want a flexible, collaborative model to meet changing industry needs. This paper reports upon a pilot project in construction management at a Melbourne university that attempted to address these needs. It demonstrates how over a five year period, HE students completed electives in practical units within the VET sector. The overwhelming success of the project meant that practical electives were embedded in the construction management programme in 2007 and this paper reports on the third, final phase of the project in 2009/10 which saw construction management students graduate with a dual qualification – both a vocational qualification and a university degree. Interviews conducted in this final phase reveal that students and industry want the benefits of a practical and theoretical qualification. The paper raises critical questions about educational pathways and suggests long-term implications for construction and tertiary education in Australia and internationally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of modern steels consisting of complex or nano-scale microstructures with advanced properties requires in-depth understanding of the mechanisms responsible for their microstructure/property relationships. The evolution of microstructure during processing is often associated with various changes taking place at atomic level. These include solute distribution between phases as a result of phase transformations, formation of atmospheres at dislocations, clustering and precipitation phenomena due to various thermo-mechanical processing schedules and/or heat treatments. Atom probe tomography (APT) is invaluable tool for gaining insight into events at atomic scale determining the steel properties. This technique also contributes to the fundamental understanding of phase transformations, which is essential for nano-scale engineering of modern steels and optimization of their performance. In this work application of APT to study solute segregation, clustering and precipitation in TRIP steels and nanostructured bainitic steels after isothermal heat-treatment and after thermomechanical processing will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous cooling transformation behaviors of low carbon steels with two Si contents (0.50% and 1. 35%) were investigated under undeformed and deformed conditions. Effects of Si contents, deformation, and cooling rates on y transformation start temperature (A,r3), phase microstructures, and hardness were studied. The results show that, in the case of the deformation with the true strain of 0. 4, the length of bainitic ferrite laths is significantly decreased in low Si steel, whereas, the M/A constituent becomes more uniform in high Si steel. An increase in cooling rates lowers the A,r3 greatly. The steel with higher level of Si exhibits higher A,r3, and higher hardness both under undeformed and deformed conditions compared with the steel with a lower Si content. Especially, the influence of Si on Ar3 is dependent on deformation. Such effects are more significant under the undeformed condition. The hardness of both steels increases with the increase of cooling rates, whereas, the deformation involved in both steels reduces the hardness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In conventional two-phase channel estimation algorithms for dual-hop multiple-input multiple-output (MIMO) relay systems, the relay-destination channel estimated in the first phase is used for the source-relay channel estimation in the second phase. For these algorithms, the mismatch between the estimated and the true relay-destination channel affects the accuracy of the source-relay channel estimation. In this paper, we investigate the impact of such channel state information (CSI) mismatch on the performance of the two-phase channel estimation algorithm. By explicitly taking into account the CSI mismatch, we develop a robust algorithm to estimate the source-relay channel. Numerical examples demonstrate the improved performance of the proposed algorithm. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure evolution and softening processes occurring in 22Cr-19Ni-3Mo austenitic and 21Cr-10Ni-3Mo duplex stainless steels deformed in torsion at 900 and 1200 °C were studied in the present work. Austenite was observed to soften in both steels via dynamic recovery (DRV) and dynamic recrystallisation (DRX) for the low and high deformation temperatures, respectively. At 900 °C, an "organised", self-screening austenite deformation substructure largely comprising microbands, locally accompanied by micro-shear bands, was formed. By contrast, a "random", accommodating austenite deformation substructure composed of equiaxed subgrains formed at 1200 °C. In the single-phase steel, DRX of austenite largely occurred through straininduced grain boundary migration accompanied by (multiple) twinning. In the duplex steel, this softening mechanism was complemented by the formation of DRX grains through subgrain growth in the austenite/ferrite interface regions and by large-scale subgrain coalescence. At 900 °C, the duplex steel displayed limited stress-assisted phase transformations between austenite and ferrite, characterised by the dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the transformed regions with strain. The softening process within ferrite was classified as "extended DRV", characterised by a continuous increase in misorientations across the sub-boundaries with strain, for both deformation temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of modern steels is based on the tailoring of the microstructure to achieve the required properties. While historically this was performed at the micrometre scale length, there is now the scope to undertake this at the nanoscale or atom scale. The present paper reviews recent work related to the development of ultrafine and nanoscale microstructures in steel as well as changes at shorter scale lengths, such as cluster formation and solute effects. This includes the development of ultrafine ferrite through phase transformation, nanoscale and ultrafine bainite, precipitation and cluster strengthening and bake hardening of steels. A key element of the present work has been the use of atom probe tomography to unlock the nature of these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured bainitic steels, containing bainitic ferrite laths and retained austenite films, formed at two different isothermal temperatures were compared  for corrosion behavior in chloride-containing solution using electrochemical techniques. The potentiodynamic polarization results suggest that nanostructured bainite formed at 200 °C exhibits marginally higher corrosion resistance compared with that at 350 °C. Post-corrosion analysis of the galvanostatically polarized samples revealed localized corrosion for both the steels, but the degree of attack was higher in the 350 °C steel than in the 200 °C steel. The localized corrosion attack was due to selective dissolution of the retained austenite phase. The higher volume fraction and larger size of retained austenite in the 350 °C steel as compared to that of the 200 °C steel contributed to the pronounced corrosion attack in the 350 °C steel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-phase structure of a novel low-alloy transformation induced plasticity (TRIP) steel was designed through experimental analysis. The evolutions of both microstructure and mechanical properties during the two-stage heat treatment were analyzed. The phase transformations during the intercritical annealing and the isothermal bainitic transformation were investigated by means of dilatometry. It was shown that two types of C diffusion were detected during intercritical annealing and a complex microstructure was formed after heat treatment. The processing parameters were selected in such a way to obtain microstructures with systematically different volume fractions of ferrite, bainite and retained austenite. The volume fractions of ferrite and retained austenite were found to be two main factors controlling the ductility. Furthermore, a high volume fraction of C-rich retained austenite, which was stabilized at room temperature, was the origin of a TRIP effect. The resulting material demonstrates a significant improvement in the ultimate tensile strength (1077. MPa) with good uniform elongation (22.5%), as compared to conventional TRIP steels. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructures and Charpy impact properties have been examined in two microalloyed steels following heat treatments to simulate weld heat affected zone (HAZ) structures over a range of heat input conditions, characterised by the cooling time from 800 to 500°C (Δt8/5). The base materials were low carbon structural steel plates microalloyed with vanadium and nitrogen (V-N) and niobium (Nb), respectively. The toughnesses of the HAZs displayed remarkably different behaviours as shown by their impact transition temperatures. For the V-N steel, the toughness improved with increasingly rapid cooling (low heat input conditions) whereas the Nb steel showed an opposite trend. Some of this behaviour could be explained by the presence of coarse ferrite grains in the slowly cooled V-N steel. However, other conditions where all the structures were bainitic and rather similar in optical micrographs gave widely different toughness values. The recently developed method of five dimensional boundary analysis based on electron backscattering diffraction has been applied to these cases for the first time. This showed that the lath boundaries in the bainite were predominantly on {1 1 0} planes of the ferrite and that the average spacing of these boundaries varied depending on steel composition and cooling rate. Since {1 1 0} is also the slip plane in ferrite, it is considered that close spacing between the lath boundaries inhibits general plasticity at stress concentrations and favours initiation of fracture. The differences between the two steels are believed to be due to their transformation behaviours on cooling where precipitation of vanadium nitride in austenite accelerates ferrite formation and raises the temperature of the phase transformation in V-N steels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced high-strength steels (AHSS) are a class of steel used primarily in sheet form for automotive structures. The microstructures of the types of steel in this classification were initially multiphase, with ferrite as the dominant phase; however, grades introduced more recently have been fully martensitic or based on austenite. This chapter initially introduces the requirements of an automotive body structure, then the different classes of AHSS that have been used in the automotive industry and their typical characteristic tensile properties. The specific properties that are required for steel used in automotive body structures are subsequently described, including formability and crash behaviour. Finally, some of the current and future trends in the development of new steel grades are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© The Royal Society of Chemistry. Solid-state polymer electrolytes, as an alternative to traditional liquid electrolytes, have been intensively investigated for energy conversion and storage devices. The transport rate of single ions is the key to their high performance. For application in emerging sodium batteries, we have developed three dual-cation polymeric ionomers, which contain bulky tetraalkylammonium ions in addition to the sodium ion. The sizes and relative contents of the ammonium ions vary relative to the sodium ion contents. Comparative studies of ion dynamics, thermal properties, phase behaviours and ionic conductivities were carried out, taking advantage of various spectroscopic and thermal chemistry methods. The ion conductivities of the ionomers are greatly enhanced by the introduction of bulky counterions, as a result of the additional free volume and decreased sodium ion association. Raman spectroscopy and thermal analysis as well as the solid-state nuclear magnetic resonance studies are used to probe the conductivity behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)