973 resultados para DNS Reparatur Doppelstrangbruch Toxikologie Histon Chromatin
Resumo:
Human synovial sarcoma has been shown to exclusively harbor the chromosomal translocation t(X;18) that produces the chimeric gene SYT-SSX. However, the role of SYT-SSX in cellular transformation remains unclear. In this study, we have established 3Y1 rat fibroblast cell lines that constitutively express SYT, SSX1, and SYT-SSX1 and found that SYT-SSX1 promoted growth rate in culture, anchorage-independent growth in soft agar, and tumor formation in nude mice. Deletion of the N-terminal 181 amino acids of SYT-SSX1 caused loss of its transforming activity. Furthermore, association of SYT-SSX1 with the chromatin remodeling factor hBRM/hSNF2α, which regulates transcription, was demonstrated in both SYT-SSX1-expressing 3Y1 cells and in the human synovial sarcoma cell line HS-SY-II. The binding region between the two molecules was shown to reside within the N-terminal 181 amino acids stretch (aa 1–181) of SYT-SSX1 and 50 amino acids (aa 156–205) of hBRM/hSNF2α and we found that the overexpression of this binding region of hBRM/hSNF2α significantly suppressed the anchorage-independent growth of SYT-SSX1-expressing 3Y1 cells. To analyze the transcriptional regulation by SYT-SSX1, we established conditional expression system of SYT-SSX1 and examined the gene expression profiles. The down-regulation of potential tumor suppressor DCC was observed among 1,176 genes analyzed by microarray analysis, and semi-quantitative reverse transcription–PCR confirmed this finding. These data clearly demonstrate transforming activity of human oncogene SYT-SSX1 and also involvement of chromatin remodeling factor hBRM/hSNF2α in human cancer.
Resumo:
The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a SWI/SNF-like chromatin-remodeling complex. A key question about chromatin-remodeling complexes is how they interact with DNA, particularly in the large genomes of higher eukaryotes. Here, we report the characterization of BAP111, a BRM-associated protein that contains a high mobility group (HMG) domain predicted to bind distorted or bent DNA. The presence of an HMG domain in BAP111 suggests that it may modulate interactions between the BRM complex and chromatin. BAP111 is an abundant nuclear protein that is present in all cells throughout development. By using gel filtration chromatography and immunoprecipitation assays, we found that the majority of BAP111 protein in embryos is associated with the BRM complex. Furthermore, heterozygosity for BAP111 enhanced the phenotypes resulting from a partial loss of brm function. These data demonstrate that the BAP111 subunit is important for BRM complex function in vivo.
Resumo:
Most methods for assessment of chromatin structure involve chemical or nuclease damage to DNA followed by analysis of distribution and susceptibility of cutting sites. The agents used generally do not permeate cells, making nuclear isolation mandatory. In vivo mapping strategies might allow detection of labile constituents and/or structures that are lost when chromatin is swollen in isolated nuclei at low ionic strengths. DNase I has been the most widely used enzyme to detect chromatin sites where DNA is active in transcription, replication or recombination. We have introduced the bovine DNase I gene into yeast under control of a galactose-responsive promoter. Expression of the nuclease leads to DNA degradation and cell death. Shorter exposure to the active enzyme allows mapping of chromatin structure in whole cells without isolation of nuclei. The validity and efficacy of the strategy are demonstrated by footprinting a labile repressor bound to its operator. Investigation of the inter-nucleosome linker regions in several types of repressed domains has revealed different degrees of protection in cells, relative to isolated nuclei.
Resumo:
Baculovirus-expressed recombinant Sir3p (rSir3p) has been purified to near homogeneity, and its binding to naked DNA, mononucleosomes, and nucleosomal arrays has been characterized in vitro. At stoichiometric levels rSir3p interacts with intact nucleosomal arrays, mononucleosomes, and naked DNA, as evidenced by formation of supershifted species on native agarose gels. Proteolytic removal of the core histone tail domains inhibits but does not completely abolish rSir3p binding to nucleosomal arrays. The linker DNA in the supershifted complexes remains freely accessible to restriction endonuclease digestion, suggesting that both the tail domains and nucleosomal DNA contribute to rSir3p–chromatin interactions. Together these data indicate that rSir3p cross-links individual nucleosomal arrays into supramolecular assemblies whose physical properties transcend those of typical 10-nm and 30-nm fibers. Based on these data we hypothesize that Sir3p functions, at least in part, by mediating reorganization of the canonical chromatin fiber into functionally specialized higher order chromosomal domains.
Resumo:
Fibroblasts derived from embryos homozygous for a disruption of the retinoblastoma gene (Rb) exhibit a shorter G1 than their wild-type counterparts, apparently due to highly elevated levels of cyclin E protein and deregulated cyclin-dependent kinase 2 (CDK2) activity. Here we demonstrate that the Rb-/- fibroblasts display higher levels of phosphorylated H1 throughout G1 with the maximum being 10-fold higher than that of the Rb+/+ fibroblasts. This profile of intracellular H1 phosphorylation corresponds with deregulated CDK2 activity observed in in vitro assays, suggesting that CDK2 may be directly responsible for the in vivo phosphorylation of H1. H1 phosphorylation has been proposed to lead to a relaxation of chromatin structure due to a decreased affinity of this protein for chromatin after phosphorylation. In accord with this, chromatin from the Rb-/- cells is more susceptible to micrococcal nuclease digestion than that from Rb+/+ fibroblasts. Increased H1 phosphorylation and relaxed chromatin structure have also been observed in cells expressing several oncogenes, suggesting a common mechanism in oncogene and tumor suppressor gene function.
Resumo:
To test the hypothesis that the nonrandom organization of the contents of interphase nuclei represents a compartmentalization of function, we examined the relative, spatial relationship of small nuclear ribonucleoproteins (snRNPs) and of DNase I hypersensitive chromatin (DHC) in rat pheochromocytoma cells. In controls, DHC and snRNPs colocalized as pan-nuclear speckles. During nerve growth factor-induced differentiation, both snRNPs and DHC migrated to the nuclear periphery with the migration of DHC preceding that of snRNPs, resulting in their transient separation. The formation of DHC shells temporally coincided with an up-regulation of neurofilament light chain mRNA. This indicates that the expression of this sequence may be associated with its spatial transposition to the nuclear periphery.
Resumo:
In this review, we attempt to summarize, in a critical manner, what is currently known about the processes of condensation and decondensation of chromatin fibers. We begin with a critical analysis of the possible mechanisms for condensation, considering both old and new evidence as to whether the linker DNA between nucleosomes bends or remains straight in the condensed structure. Concluding that the preponderance of evidence is for straight linkers, we ask what other fundamental process might allow condensation, and argue that there is evidence for linker histone-induced contraction of the internucleosome angle, as salt concentration is raised toward physiological levels. We also ask how certain specific regions of chromatin can become decondensed, even at physiological salt concentration, to allow transcription. We consider linker histone depletion and acetylation of the core histone tails, as possible mechanisms. On the basis of recent evidence, we suggest a unified model linking targeted acetylation of specific genomic regions to linker histone depletion, with unfolding of the condensed fiber as a consequence.
Resumo:
DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.
Resumo:
We have previously reported repeat-induced gene silencing (RIGS) in Arabidopsis, in which transgene expression may be silenced epigenetically when repeated sequences are present. Among an allelic series of lines comprising a primary transformant and various recombinant progeny carrying different numbers of drug resistance gene copies at the same locus, silencing was found to depend strictly on repeated sequences and to correlate with an absence of steady-state mRNA. We now report characterization, in nuclei isolated from the same transgenic lines, of gene expression by nuclear run-on assay and of chromatin structure by nuclease protection assay. We find that silencing is correlated with absence of run-on transcripts, indicating that expression is silenced at the level of transcription. We find further that silencing is also correlated with increased resistance to both DNase I and micrococcal nuclease, indicating that the silenced state reflects a change in chromatin configuration. We propose that silencing results when a locally paired region of homologous repeated nucleotide sequences is flanked by unpaired heterologous DNA, which leads chromatin to adopt a local configuration that is difficult to transcribe, and possibly akin to heterochromatin.
Resumo:
Boundary or insulator elements set up independent territories of gene activity by establishing higher order domains of chromatin structure. The gypsy retrotransposon of Drosophila contains an insulator element that represses enhancer-promoter interactions and is responsible for the mutant phenotypes caused by insertion of this element. The gypsy insulator inhibits the interaction of promoter-distal enhancers with the transcription complex without affecting the functionality of promoter-proximal enhancers; in addition, these sequences can buffer a transgene from chromosomal position effects. Two proteins have been identified that bind gypsy insulator sequences and are responsible for their effects on transcription. The suppressor of Hairy-wing [su(Hw)] protein affects enhancer function both upstream and downstream of its binding site by causing a silencing effect similar to that of heterochromatin. The modifier of mdg4 [mod(mdg4)] protein interacts with su(Hw) to transform this bi-directional repression into the polar effect characteristic of insulators. These effects seem to be modulated by changes in chromatin structure.
Resumo:
It is now well understood that chromatin structure is perturbed in the neighborhood of expressed genes. This is most obvious in the neighborhood of promoters and enhancers, where hypersensitivity to nucleases marks sites that no longer carry canonical nucleosomes, and to which transcription factors bind. To study the relationship between transcription factor binding and the generation of these hypersensitive regions, we mutated individual cis-acting regulatory elements within the enhancer that lies between the chicken beta- and epsilon-globin genes. Constructions carrying the mutant enhancer were introduced by stable transformation into an avian erythroid cell line. We observed that weakening the enhancer resulted in creation of two classes of site: those still completely accessible to nuclease attack and those that were completely blocked. This all-or-none behavior suggests a mechanism by which chromatin structure can act to sharpen the response of developmental systems to changing concentrations of regulatory factors. Another problem raised by chromatin structure concerns the establishment of boundaries between active and inactive chromatin domains. We have identified a DNA element at the 5' end of the chicken beta-globin locus, near such a boundary, that has the properties of an insulator; in test constructions, it blocks the action of an enhancer on a promoter when it is placed between them. We describe the properties and partial dissection of this sequence. A third problem is posed by the continued presence of nucleosomes on transcribed genes, which might prevent the passage of RNA polymerase. We show, however, that a prokaryotic polymerase can transcribe through a histone octamer on a simple chromatin template. The analysis of this process reveals that an octamer is capable of transferring from a position in front of the polymerase to one behind, without ever losing its attachment to the DNA.
Resumo:
Eukaryotic homologs of Escherichia coli Rec-A protein have been shown to form nucleoprotein filaments with single-stranded DNA that recognize homologous sequences in duplex DNA. Several recent reports in four widely diverse species have demonstrated the association of RecA homologs with meiotic prophase chromatin. The current immunocytological study on mouse spermatocytes and oocytes shows that a eukaryotic homolog, Rad5l, associates with a subset of chromatin sites as early as premeiotic S phase, hours before either the appearance of precursors of synaptonemal complexes or the initiation of synapsis. When homologous chromosomes do begin to pair, the Rad5l-associated sequences are sites of initial contact between homologues and of localized DNA synthesis. Distribution of Rad5l foci on the chromatin of fully synapsed bivalents at early pachynema corresponds to an R-band pattern of mitotic chromosomes. R-bands are known to be preferred sites of both synaptic initiation and recombination. The time course of appearance of Rad51 association with chromatin, its distribution, and its interaction with other Rad5l-associated sequences suggests that it plays an important role preselection of sequences and synaptic initiation.
Resumo:
At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.