223 resultados para DNS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbulent flow around a rotating circular cylinder has numerous applications including wall shear stress and mass-transfer measurement related to the corrosion studies. It is also of interest in the context of flow over convex surfaces where standard turbulence models perform poorly. The main purpose of this paper is to elucidate the basic turbulence mechanism around a rotating cylinder at low Reynolds numbers to provide a better understanding of flow fundamentals. Direct numerical simulation (DNS) has been performed in a reference frame rotating at constant angular velocity with the cylinder. The governing equations are discretized by using a finite-volume method. As for fully developed channel, pipe, and boundary layer flows, a laminar sublayer, buffer layer, and logarithmic outer region were observed. The level of mean velocity is lower in the buffer and outer regions but the logarithmic region still has a slope equal to the inverse of the von Karman constant. Instantaneous flow visualization revealed that the turbulence length scale typically decreases as the Reynolds number increases. Wavelet analysis provided some insight into the dependence of structural characteristics on wave number. The budget of the turbulent kinetic energy was computed and found to be similar to that in plane channel flow as well as in pipe and zero pressure gradient boundary layer flows. Coriolis effects show as an equivalent production for the azimuthal and radial velocity fluctuations leading to their ratio being lowered relative to similar nonrotating boundary layer flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The publication comments on certain moments of the method of teaching the types of addresses and their use in the TCP/IP protocol stack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secure Access For Everyone (SAFE), is an integrated system for managing trust

using a logic-based declarative language. Logical trust systems authorize each

request by constructing a proof from a context---a set of authenticated logic

statements representing credentials and policies issued by various principals

in a networked system. A key barrier to practical use of logical trust systems

is the problem of managing proof contexts: identifying, validating, and

assembling the credentials and policies that are relevant to each trust

decision.

SAFE addresses this challenge by (i) proposing a distributed authenticated data

repository for storing the credentials and policies; (ii) introducing a

programmable credential discovery and assembly layer that generates the

appropriate tailored context for a given request. The authenticated data

repository is built upon a scalable key-value store with its contents named by

secure identifiers and certified by the issuing principal. The SAFE language

provides scripting primitives to generate and organize logic sets representing

credentials and policies, materialize the logic sets as certificates, and link

them to reflect delegation patterns in the application. The authorizer fetches

the logic sets on demand, then validates and caches them locally for further

use. Upon each request, the authorizer constructs the tailored proof context

and provides it to the SAFE inference for certified validation.

Delegation-driven credential linking with certified data distribution provides

flexible and dynamic policy control enabling security and trust infrastructure

to be agile, while addressing the perennial problems related to today's

certificate infrastructure: automated credential discovery, scalable

revocation, and issuing credentials without relying on centralized authority.

We envision SAFE as a new foundation for building secure network systems. We

used SAFE to build secure services based on case studies drawn from practice:

(i) a secure name service resolver similar to DNS that resolves a name across

multi-domain federated systems; (ii) a secure proxy shim to delegate access

control decisions in a key-value store; (iii) an authorization module for a

networked infrastructure-as-a-service system with a federated trust structure

(NSF GENI initiative); and (iv) a secure cooperative data analytics service

that adheres to individual secrecy constraints while disclosing the data. We

present empirical evaluation based on these case studies and demonstrate that

SAFE supports a wide range of applications with low overhead.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because the interactions between feedforward influences are inextricably linked during many motor outputs (including but not limited to walking), the contribution of descending inputs to the generation of movements is difficult to study. Here we take advantage of the relatively small number of descending neurons (DNs) in the Drosophila melanogaster model system. We first characterize the number and distribution of the DN populations, then present a novel load free preparation, which enables the study of descending control on limb movements in a context where sensory feedback can be is reduced while leaving the nervous system, musculature, and cuticle of the animal relatively intact. Lastly we use in-vivo whole cell patch clamp electrophysiology to characterize the role of individual DNs in response to specific sensory stimuli and in relationship to movement. We find that there are approximately 1100 DNs in Drosophila that are distributed across six clusters. Input from these DNs is not necessary for coordinated motor activity, which can be generated by the thoracic ganglion, but is necessary for the specific combinations of joint movements typically observed in walking. Lastly, we identify a particular cluster of DNs that are tuned to sensory stimuli and innervate the leg neuromeres. We propose that a multi-layered interaction between these DNs, other DNs, and motor circuits in the thoracic ganglia enable the diverse but well-coordinated range of motor outputs an animal might exhibit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Content Centric Network (CCN) is a proposed future internet architecture that is based on the concept of contents name instead of the hosts name followed in the traditional internet architecture. CCN architecture might do changes in the existing internet architecture or might replace it completely. In this paper, we present modifications to the existing Domain Name System (DNS) based on the CCN architecture requirements without changing the existing routing architecture. Hence the proposed solution achieves the benefits of both CCN and existing network infrastructure (i.e. content based routing, independent of host location, caching and content delivery protocols).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper is a report on progress in the simulation of turbulent flames using the Cray T3D and T3E at the Edinburgh parallel computing centre, using codes developed in Cambridge. Two combustion DNS codes are described, ANGUS and SENGA, which solve incompressible and fully compressible reacting flows respectively. The technical background to combustion DNS is presented, and the resource requirements explained in terms of the physic and chemistry of the problem. Results for flame turbulence interaction studies are presented and discussed in terms of their relevance to modelling. Recent work on the fully compressible problem is highlighted and future directions outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no consensus on an accurate and general simulation methodology. Most prior numerical work has imposed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may be history dependent and, thus, any single mathematical function is inappropriate. Given these limitations, the present work has two primary goals: 1) create a numerical framework that allows the contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and numerical methods such that contact-line simulations may be performed on coarse computational meshes.

Fluid flows affected by contact lines are dominated by capillary stresses and require accurate curvature calculations. The level set method was chosen to track the fluid interfaces because it is easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers from an ill-posed mathematical problem at contact lines: a ``blind spot'' exists. Standard techniques to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reinitialization is proposed to remove these spurious velocity currents and its concept is further explored with level-set extension velocities.

To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity boundary condition and a fixed contact angle, are implemented in direct numerical simulations (DNS). DNS are found to converge only if the slip length is well resolved by the computational mesh. Unfortunately, since the slip length is often very small compared to fluid structures, these simulations are not computationally feasible for large systems. To address the second goal, a new methodology is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms, an average curvature and a viscous shear VS, are proposed to represent the missing microscale physics on a coarse mesh.

All of these components are then combined into a single framework and tested for a water droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of the contact diameter in time between the experimental measurements and the numerical simulation. Such comparison would not be possible with prior methods, since the Reynolds number Re and capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio is well outside of the range currently achievable by DNS. This framework is a promising first step towards simulating complex physics in capillary-dominated flows at a reasonable computational expense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional direct numerical simulations (DNS) have been performed on a finite-size hemispherecylinder model at angle of attack AoA = 20◦ and Reynolds numbers Re = 350 and 1000. Under these conditions, massive separation exists on the nose and lee-side of the cylinder, and at both Reynolds numbers the flow is found to be unsteady. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed in order to study the primary instability that triggers unsteadiness at Re = 350. The dominant coherent flow structures identified at the lower Reynolds number are also found to exist at Re = 1000; the question is then posed whether the flow oscillations and structures found at the two Reynolds numbers are related. POD and DMD computations are performed using different subdomains of the DNS computational domain. Besides reducing the computational cost of the analyses, this also permits to isolate spatially localized oscillatory structures from other, more energetic structures present in the flow. It is found that POD and DMD are in general sensitive to domain truncation and noneducated choices of the subdomain may lead to inconsistent results. Analyses at Re = 350 show that the primary instability is related to the counter rotating vortex pair conforming the three-dimensional afterbody wake, and characterized by the frequency St ≈ 0.11, in line with results in the literature. At Re = 1000, vortex-shedding is present in the wake with an associated broadband spectrum centered around the same frequency. The horn/leeward vortices at the cylinder lee-side, upstream of the cylinder base, also present finite amplitude oscillations at the higher Reynolds number. The spatial structure of these oscillations, described by the POD modes, is easily differentiated from that of the wake oscillations. Additionally, the frequency spectra associated with the lee-side vortices presents well defined peaks, corresponding to St ≈ 0.11 and its few harmonics, as opposed to the broadband spectrum found at the wake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wingtip vortices represent a hazard for the stability of the following airplane in airport highways. These flows have been usually modeled as swirling jets/wakes, which are known to be highly unstable and susceptible to breakdown at high Reynolds numbers for certain flow conditions, but different to the ones present in real flying airplanes. A very recent study based on Direct Numerical Simulations (DNS) shows that a large variety of helical responses can be excited and amplified when a harmonic inlet forcing is imposed. In this work, the optimal response of q-vortex (both axial vorticity and axial velocity can be modeled by a Gaussian profile) is studied by considering the time-harmonically forced problem with a certain frequency ω. We first reproduce Guo and Sun’s results for the Lamb-Oseen vortex (no axial flow) to validate our numerical code. In the axisymmetric case m = 0, the system response is the largest when the input frequency is null. The axial flow has a weak influence in the response for any axial velocity intensity. We also consider helical perturbations |m| = 1. These perturbations are excited through a resonance mechanism at moderate and large wavelengths as it is shown in Figure 1. In addition, Figure 2 shows that the frequency at which the optimal gain is obtained is not a continuous function of the axial wavenumber k. At smaller wavelengths, large response is excited by steady forcing. Regarding the axial flow, the unstable response is the largest when the axial velocity intensity, 1/q, is near to zero. For perturbations with higher azimuthal wavenumbers |m| > 1, the magnitudes of the response are smaller than those for helical modes. In order to establish an alternative validation, DNS has been carried out by using a pseudospectral Fourier formulation finding a very good agreement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is about producing recombinant Trichoderma reesei endoglucanase Cel7B by using Kluyveromyces lactis, transformed with chromosomally integrated Cel7B cDNA, as a host cell (K. lactis Cel7B). Cel7B is one of the glycoside hydrolyze family of proteins that are produced by T. reesei. Cel7B together with other endoglucanases, exoglucanases, and â-glucosidases hydrolyze cellulose to glucose, which can then be fermented to biofuels or other value-added products. The research objective of this MS project is to examine favorable fermentation conditions for recombinant Cel7B enzyme production and improved activity. Production of enzyme on different types of media was examined, and the activity of the enzyme was measured by using different tools or procedures. The first condition tested for was using different concentrations of galactose as a carbon and energy source; however galactose also acts as a potent promoter of recombinant Cel7B expression in K. lactis Cel7B. The purpose of this method is to determine the relationship between production of enzyme with increasing sugar concentration. The second culture condition test was using different types of media: a complex medium-yeast extract, peptone, galactose (YPGal); a minimal medium-yeast nitrogen base (YNB) with galactose; and a minimal medium with supplement-yeast nitrogen base with casamino acid (YBC), a nitrogen source, with galactose. The third condition was using different types of reactors or fermenters: a small reactor (shake flask) and a larger automated bioreactor (BioFlo 3000 fermenter). The purpose of this method is to determine the quantity of the protein produced by using different environments of production. Different tools to determine the presence and activity of Cel7B enzyme were used. For the presence of enzyme, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used. Secondly, to detect enzyme activity, the carboxymethyl cellulose- 3,5-dinitrosalicylic acid (CMC- DNS) assay was employed. SDS-PAGE showed that the enzyme band was at 67 kDa, which is larger than native Cel7B (52 kDa.), likely due to over glycolylation during post-translational processing in K. lactis. For the different types of media used in our fermentation, recombinant Cel7B was produced from yeast extract peptone galactose (YPGal), and yeast nitrogen base with casamino acid (YBC), but was not produced and no activity was detected from yeast nitrogen base (YNB). This experiment concluded that the Cel7B production requires the amino acid resources as part of fermentation medium. In experiments where recombinant Cel7B net activity was measured at 1% galactose initial concentration in YPGal and YBC media, higher enzyme activity was detected for the complex medium YPGal. Higher activity of recombinant Cel7B was detected for flask culture in 2% galactose compared to 1% galactose for YBC medium. Two bioreactor experiments were conducted under these culture conditions at 30°C, pH 7.0, dissolved oxygen of 50% of saturation, and 250 rpm agitation (variable depending on DO control) K. lactis-Cel7B yeast growth curves were quite reproducible with maximum optical density (O.D) at 600 nm of between 7 and 8 (when factoring dilution of 10:1). Galactose was consumed rapidly during the first 15 hours of bioreactor culture and recombinant Cel7B started to appear in the culture at 10-15 hours and increased thereafter up to a maximum of between 0.9 and 1.6 mg/mL/hr in these experiments. These bioreactor enzyme activity results are much higher than comparable experiments conducted with flask-scale culture (0.5 mg/mL/hr). In order to achieve the highest recombinant Cel7B activity from batch culture of K. lactis-Cel7B, based on this research it is best to use a complex medium, 2% initial galactose concentration, and an automated bioreactor where good control of temperature, pH, and dissolved oxygen can be achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esse trabalho tem por objetivo realizar o levantamento florístico associado a indivíduos de Schinopsis brasiliensis, em diferentes ambientes, visando verificar a influência da situação de campo nessa associação. O levantamento foi realizado no Campo Experimental da Caatinga, pertencente à Embrapa Semiárido, em três áreas com diferentes ambientes. Em cada área, foram selecionados dez indivíduos de Schinopsis brasiliensis. O levantamento florístico foi realizado em cada individuo, registrando-se todas as espécies, com DNS menor que 3,0 cm, encontradas no limite estabelecido pelo diâmetro de copa. Foram registradas 76 espécies pertencentes a 34 famílias botânicas, sendo Euphorbiaceae (14,47%), Fabaceae (10,53%) e Poaceae (9,09%) as que se destacaram. O maior número de espécies associadas a indivíduos de S. brasilienses foi registrado na Caatinga em regeneração (n=51), seguida pela Caatinga preservada (n=43) e plantio adensado (n=33), mostrando que o manejo pode estar refletindo na diversidade de plantas encontrada sob a copa das árvores dessa espécie.