982 resultados para DECOUPLED BANDS
Resumo:
Silicic volcanic eruptions are typically accompanied by repetitive Long-Period (LP) seismicity that originates from a small region of the upper conduit. These signals have the capability to advance eruption prediction, since they commonly precede a change in the eruption vigour. Shear bands forming along the conduit wall, where the shear stresses are highest, have been linked to providing the seismic trigger. However, existing computational models are unable to generate shear bands at the depths where the LP signals originate using simple magma strength models. Presented here is a model in which the magma strength is determined from a constitutive relationship dependent upon crystallinity and pressure. This results in a depth-dependent magma strength, analogous to planetary lithospheres. Hence, in shallow highly-crystalline regions a macroscopically discontinuous brittle type of deformation will prevail, whilst in deeper crystal-poor regions there will be a macroscopically continuous plastic deformation mechanism. This will result in a depth where the brittle-ductile transition occurs, and here shear bands disconnected from the free-surface may develop. We utilize the Finite Element Method and use axi-symmetric coordinates to model magma flow as a viscoplastic material, simulating quasi-static shear bands along the walls of a volcanic conduit. Model results constrained to the Soufrière Hills Volcano, Montserrat, show the generation of two types of shear bands: upper-conduit shear bands that form between the free-surface to a few 100 metres below it and discrete shear bands that form at the depths where LP seismicity is measured to occur corresponding to the brittle-ductile transition and the plastic shear region. It is beyond the limitation of the model to simulate a seismic event, although the modelled viscosity within the discrete shear bands suggests a failure and healing cycle time that supports the observed LP seismicity repeat times. However, due to the paucity of data and large parameter space available these results can only be considered to be qualitative rather than quantitative at this stage.
Resumo:
Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype-and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.
Resumo:
Instantaneous outbursts in underground coal mines have occurred in at least 16 countries, involving both methane (CH4) and carbon dioxide (CO2). The precise mechanisms of an instantaneous outburst are still unresolved but must consider the effects of stress, gas content and physico-mechanical properties of the coal. Other factors such as mining methods (e.g., development heading into the coal seam) and geological features (e.g., coal seam disruptions from faulting) can combine to exacerbate the problem. Prediction techniques continue to be unreliable and unexpected outburst incidents resulting in fatalities are a major concern for underground coal operations. Gas content thresholds of 9 m(3)/t for CH4 and 6 m(3)/t for CO2 are used in the Sydney Basin, to indicate outburst-prone conditions, but are reviewed on an individual mine basis and in mixed as situations. Data on the sorption behaviour of Bowen Basin coals from Australia have provided an explanation for the conflicting results obtained by coal face desorption indices used for outburst-proneness assessment. A key factor appears to be different desorption rates displayed by banded coals, which is supported by both laboratory and mine-site investigations. Dull coal bands with high fusinite and semifusinite contents tend to display rapid desorption from solid coal, for a given pressure drop. The opposite is true for bright coal bands with high vitrinite contents and dull coal bands with high inertodetrinite contents. Consequently, when face samples of dull, fusinite-or semifusinite-rich coal of small particle size are taken for desorption testing, much gas has already escaped and low readings result. The converse applies for samples taken from coal bands with high vitrinite and/or inertodetrinite contents. In terms of outburst potential, it is the bright, vitrinite-rich and the dull, inertodetrinite-rich sections of a coal seam that appear to be more outburst-prone. This is due to the ability of the solid coal to retain gas, even after pressure reduction, creating a gas content gradient across the coal face sufficient to initiate an outburst. Once the particle size of the coal is reduced, rapid gas desorption can then take place. (C) 1998 Elsevier Science.
Resumo:
The low temperature electronic spectrum of Cu(II) doped Cs2ZrCl6 is reported. It is found that Cu(II) is incorporated as the square planar copper tetrachloride ion, CuCl42-, which substitutes at the Zr(IV) site in the Cs2ZrCl6 lattice. There is a complete absence of axial coordination. The optical spectrum shows vibronic structure with peak widths as small as 8 cm(-1), far narrower than previously seen for this ion. The energy of the observed transitions and the Franck-Condon intensity pattern suggest that there is a substantial relaxation of the host lattice about the impurity ion. The relative intensity of the magnetic dipole component of the bands appears to be considerably greater than for pure copper(II) compounds containing the CuCl42- ion. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A marker database was compiled for isolates of the potato and tomato late blight pathogen, Phytophthora infestans, originating from 41 locations which include 31 countries plus 10 regions within Mexico. Presently, the database contains information on 1,776 isolates for one or more of the following markers: restriction fragment length polymorphism (RFLP) fingerprint consisting of 23 bands; mating type; dilocus allozyme genotype; mitochondrial DNA haplotype; sensitivity to the fungicide metalaxyl; and virulence. In the database, 305 entries have unique RFLP fingerprints and 258 entries have unique multilocus genotypes based on RFLP fingerprint, dilocus allozyme genotype, and mating type. A nomenclature is described for naming multilocus genotypes based on the International Organization for Standardization (ISO) two-letter country code and a unique number, Forty-two previously published multilocus genotypes are represented in the database with references to publications. As a result of compilation of the database, seven new genotypes were identified and named. Cluster analysis of genotypes from clonally propagated populations worldwide generally confirmed a previously published classification of old and new genotypes. Genotypes from geographically distant countries were frequently clustered, and several old and new genotypes were found in two or more distant countries. The cluster analysis also demonstrated that A2 genotypes from Argentina differed from all others. The database is available via the Internet, and thus can serve as a resource for Phytophthora workers worldwide.
Resumo:
The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
The properties of the hydrogen-bonded polymer blends of poly(4-vinylphenol) and poly(2-ethoxyethyl methacrylate) are presented. Spectroscopic techniques such as C-13 solid-state NMR and FT-IR are used to probe specific interactions of the blends at various compositions. Spectral features from both techniques revealed that site-specific interactions are present, consistent with a significant degree of mixing of the blend components. Changes in chemical shift and line shape of the phenolic carbon and carbonyl resonances in the C-13 CPMAS spectra of the blends as a function of composition are interpreted as resulting from changes in the relative intensities of two closely overlapped signals. A quantitative measure of hydrogen-bonded carbonyl groups using C-13 NMR has been obtained which agreed well with the results from FT-IR analyses. It is also shown that C-13 NMR can be used to measure the fraction of hydroxyl groups associated with carbonyl groups, which was not possible previously using FT-IR due to extensive overlapping of bands in the hydroxyl stretching region. The results of measurements of H-1 T-1 and 1H T-1 rho indicate that PVPh and PEEMA are intimately mixed on a scale less than 2-3 nm.
Resumo:
We report detailed measurements of the interlayer magnetoresistance of the layered organic superconductor kappa-(BEDT-TTF)(2)Cu(SCN)(2) for temperatures down to 0.5 K and fields up to 30 T. The upper critical field is determined from the resistive transition for a wide range of temperatures and field directions. For magnetic fields parallel to the layers, the upper critical field increases approximately linearly with decreasing temperature. The upper critical field at low temperatures is compared to the Pauli paramagnetic limit, at which singlet superconductivity should be destroyed by the Zeeman splitting of the electron spins. The measured value is comparable to a value for the paramagnetic limit calculated from thermodynamic quantities but exceeds the limit calculated from BCS theory. The angular dependence of the upper critical field shows a cusplike feature for fields close to the layers, consistent with decoupled layers.
Resumo:
We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.
Resumo:
The number of repeats in repetitive DNA like micro- and minisatellites is often determined by polymerase chain reaction (PCR). When we counted repeats in an array of mitochondrial repeats in the cattle tick (Boophilus microplus) we found that the number of repeats increased during PCR. Multiplication of the repeats was independent of the primers used to amplify the region, the PCR annealing temperature and the length of the PCR product. The use of PCR to determine the number of repeats in arrays needs to be reassessed. For long repeats, a subset of samples should always be analysed by Southern blot hybridization to confirm the PCR results.
Resumo:
This work presents new Structural data from a high-pressure/low-temperature (HP/LT) metamorphic terrane exposed on the islands of Syros and Sifnos (Cyclades, Greece). The structure and the metamorphism of a relatively coherent HP/LT rock section were studied in order to elucidate how strain was accommodated at deep crustal levels during the formation and exhumation of HP/LT rocks. At least three deformation phases associated with eclogite- and blueschist-facies conditions (P = 8-15 kbar; T = 400-550 degreesC) were recognised. The earliest deformation fabric (S1), preserved as inclusion trails within garnet porphyroblasts, is aligned to define a sub-vertical schistosity (at present orientation), which is frequently orthogonal to the flat matrix schistosity (S2), and may indicate that deep crustal thickening involved upright folding. The currently dominant fabric in the HP rock section, S2, is Usually moderately dipping and locally contains NW-trending glaucophane lineations, symmetric pressure-shadows and eclogitic boudins. The symmetric structures associated with this fabric seem to indicate coaxial vertical thinning, although the existence of non-coaxial structures out of the study area cannot be excluded. Glaucophane-bearing shear bands (S3), with top-to-NW sense of shearing, locally crosscut the earlier structures. The latest recognised fabric (D4) is scarce and often absent within the HP rocks. It is associated with top-to-NE kinematic criteria that formed at greenschist-facies conditions (P = 4-7 kbar; T = 400-450 degreesC). Based on these observations, it is suggested that partitioning of strain occurred at different crustal levels and at different times. Deep crustal deformation was governed by thickening via upright folding followed by coaxial vertical thinning, whereas non-coaxial shearing occurred when the rocks were already exhumed to relatively shallow crustal levels. The earliest fabrics (D1 to D3) pertain to Alpine orogenesis and possibly to syn-orogenic extension, whereas the latest correspond to whole-crust back-are extension. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The synthesis of the hexadentate ligand 2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (EtN(4)S(2)amp) is reported. The ligand is of a type in which bifurcations of the chain occur at atoms other than donor atoms. The cobalt(III) complex [Co(EtN(4)S(2)amp)](3+) (1) was isolated and characterized. The synthetic methodology also results in a number of by-products, notably 2,9,9-tris(methyleneamine)-9-methylenehydroxy-4,7-dithiadecane (Et(HO)N(3)S(2)amp) and an eleven-membered pendant arm macrocyclic ligand 6,10-dimethyl-6,10-bis(methyleneamine)-1,4-dithia-8-azaacycloundec-7- ene (dmatue). The complexes [Co(Et(HO)N(3)S(2)amp)](3+) (2), in which the alcohol is coordinated to the metal ion, and [Co(dmatue)Cl](2+) (4) were isolated and characterized. Et(HO)N(3)S(2)amp also undergoes complexation with cobalt(III) to produce two isomers endo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (endo-3) and exo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (exo-3), both with an uncoordinated alcohol group. endo- 3 has the alcohol positioned cis, and exo-3 trans, to the sixth metal coordination site. Reaction of 1 with isobutyraldehyde, paraformaldehyde and base in dimethylformamide results in the encapsulated complex [Co(1,5,5,9,13,13-hexamethyl-18,21-dithia-3,7,11,15-tetraazabicyclo[7.7.6]docosa- 3,14-diene)](ClO4)(3) . 2H(2)O ([Co(Me(6)docosadieneN(4)S(2))](3+) ( 5). All complexes have been characterized by single crystal X-ray study. The low-temperature (11 K) absorption spectrum of 1 has been measured in Nafion films with spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands observed. The octahedral ligand-field parameters were determined (10Dq = 22570 cm(-1), B = 551 cm(-1); C = 3500 cm(-1)). For 5 10Dq and B were determined (20580 cm(-1); 516 cm(-1), respectively) and compared with those for similar expanded cavity complexes [Co(Me(8)tricosatrieneN(6))](3+) and [Co(Me(5)tricosatrieneN(6))](3+).
Resumo:
Human N-acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter 1) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.