950 resultados para D-aspartate Uptake


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Repetitive stimuli reliably induce long-term potentiation (LTP) of synapses in the upper layers of the granular somatosensory cortex but not the agranular motor cortex of rats. Herein we examine, in these same cortical areas, short-term changes in synaptic strength that occur during the LTP induction period. theta-Burst stimulation produced a strong short-term enhancement of synapses in the granular area but only weak enhancement in the agranular area. The magnitude of enhancement during stimulation was strongly correlated with the magnitude of LTP subsequently expressed. Short-term enhancement was abolished by an antagonist of N-methyl-D-aspartate (NMDA) receptors but remained in the presence of a non-NMDA receptor antagonist. Inhibitory postsynaptic potentials of the granular and agranular areas displayed similar frequency sensitivity, but the frequency sensitivity of NMDA receptor-dependent excitatory postsynaptic potentials differed significantly between areas. We propose that pathway-specific differences in short-term enhancement are due to variations in the frequency dependence of NMDA currents; different capacities for short-term enhancement may explain why repetitive stimulation more readily induces LTP in the somatosensory cortex than in the motor cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuronal proliferation, migration, and differentiation are regulated by the sequential expression of particular genes at specific stages of development. Such processes rely on differential gene expression modulated through second-messenger systems. Early postnatal mouse cerebellar granule cells migrate into the internal granular layer and acquire differentiated properties. The neurotransmitter glutamate has been shown to play an important role in this developmental process. We show here by immunohistochemistry that the RelA subunit of the transcription factor NF-kappa B is present in several areas of the mouse brain. Moreover, immunofluorescence microscopy and electrophoretic mobility-shift assay demonstrate that in cerebellar granule cell cultures derived from 3- to 7-day-old mice, glutamate specifically activates the transcription factor NF-kappa B, as shown by binding of nuclear extract proteins to a synthetic oligonucleotide reproducing the kappa B site of human immunodeficiency virus. The use of different antagonists of the glutamate recpetors indicates that the effect of glutamate occurs mainly via N-methyl-D-aspartate (NMDA)-receptor activation, possibly as a result of an increase in intracellular Ca2+. The synaptic specificity of the effect is strongly suggested by the observation that glutamate failed to activate NF-kappa B in astrocytes, while cytokines, such as interleukin 1 alpha and tumor necrosis factor alpha, did so. The effect of glutamate appears to be developmentally regulated. Indeed, NF-kappa B is found in an inducible form in the cytoplasm of neurons of 3- to 7-day-old mice but is constitutively activated in the nuclei of neurons derived from older pups (8-10 days postnatal). Overall, these observations suggest the existence of a new pathway of trans-synaptic regulation of gene expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Only three isoforms of adenylyl cyclase (EC 4.6.1.1) mRNAs (AC1, -2, and -5) are expressed at high levels in rat brain. AC1 occurs predominantly in hippocampus and cerebellum, AC5 is restricted to the basal ganglia, whereas AC2 is more widely expressed, but at much lower levels. The distribution and abundance of adenylyl cyclase protein were examined by immunohistochemistry with an antiserum that recognizes a peptide sequence shared by all known mammalian adenylyl cyclase isoforms. The immunoreactivity in striatum and hippocampus could be readily interpreted within the context of previous in situ hybridization studies. However, extending the information that could be gathered by comparisons with in situ hybridization analysis, it was apparent that staining was confined to the neuropil--corresponding to immunoreactive dendrites and axon terminals. Electron microscopy indicated a remarkably selective subcellular distribution of adenylyl cyclase protein. In the CA1 area of the hippocampus, the densest immunoreactivity was seen in postsynaptic densities in dendritic spine heads. Labeled presynaptic axon terminals were also observed, indicating the participation of adenylyl cyclase in the regulation of neurotransmitter release. The selective concentration of adenylyl cyclases at synaptic sites provides morphological data for understanding the pre- and postsynaptic roles of adenylyl cyclase in discrete neuronal circuits in rat brain. The apparent clustering of adenylyl cyclases, coupled with other data that suggest higher-order associations of regulatory elements including G proteins, N-methyl-D-aspartate receptors, and cAMP-dependent protein kinases, suggests not only that the primary structural information has been encoded to render the cAMP system responsive to the Ca(2+)-signaling system but also that higher-order strictures are in place to ensure that Ca2+ signals are economically delivered and propagated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol and activating protein kinase C, accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, nonamyloidogenic derivatives (APPs), as previously shown. This relationship has been demonstrated in human glioma and neuroblastoma cells, as well as in transfected human embryonic kidney 293 cells and PC-12 cells. We now provide evidence that stimulation of metabotropic glutamate receptors (mGluRs), which also are coupled to phosphatidylinositol 4,5-bisphosphate hydrolysis, similarly accelerates processing of APP into nonamyloidogenic APPs. This process is demonstrated both in hippocampal neurons derived from fetal rats and in human embryonic kidney 293 cells transfected with cDNA expression constructs encoding the mGluR 1 alpha subtype. In hippocampal neurons, both an mGluR antagonist, L-(+)-2-amino-3-phosphonopropionic acid, and an inhibitor of protein kinase C, GF 109203X, blocked the APPs release evoked by glutamate receptor stimulation. Ionotropic glutamate agonists, N-methyl-D-aspartate or S(-)-5-fluorowillardiine, failed to affect APPs release. These data show that selective mGluR agonists that initiate signal-transduction events can regulate APP processing in bona fide primary neurons and transfected cells. As glutamatergic neurons in the cortex and hippocampus are damaged in Alzheimer disease, amyloid production in these regions may be enhanced by deficits in glutamatergic neurotransmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the rat suprachiasmatic nucleus slice culture, circadian rhythms in the release of arginine vasopressin and vasoactive intestinal polypeptide were measured simultaneously and longitudinally. The phase relationship between the two peptide rhythms was relatively constant in the culture without a treatment of antimitotic drugs but became diverse by an introduction of antimitotics, which is generally used to reduce the number of glial cells. By monitoring the two rhythms continuously for 6 days, different periods were detected in culture with the antimitotic treatment. Furthermore, N-methyl-D-aspartate shifted the phase of the two peptide rhythms in the same culture differently. These results indicate that the arginine vasopressin and vasoactive intestinal polypeptide release are under control of different circadian oscillators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trans-synaptic activation of gene expression is linked to long-term plastic adaptations in the nervous system. To examine the molecular program induced by synaptic activity, we have employed molecular cloning techniques to identify an immediate early gene that is rapidly induced in the brain. We here report the entire nucleotide sequence of the cDNA, which encodes an open reading frame of 396 amino acids. Within the hippocampus, constitutive expression was low. Basal levels of expression in the cortex were high but can be markedly reduced by blockade of N-methyl-D-aspartate receptors. By contrast, synaptic activity induced by convulsive seizures increased mRNA levels in neurons of the cortex and hippocampus. High-frequency stimulation of the perforant path resulted in long-term potentiation and a spatially confined dramatic increase in the level of mRNA in the granule cells of the ipsilateral dentate gyrus. Transcripts were localized to the soma and to the dendrites of the granule cells. The dendritic localization of the transcripts offers the potential for local synthesis of the protein at activated postsynaptic sites and may underlie synapse-specific modifications during long-term plastic events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agonists of the dopamine D1/D5 receptors that are positively coupled to adenylyl cyclase specifically induce a slowly developing long-lasting potentiation of the field excitatory postsynaptic potential in the CA1 region of the hippocampus that lasts for > 6 hr. This potentiation is blocked by the specific D1/D5 receptor antagonist SCH 23390 and is occluded by the potentiation induced by cAMP agonists. An agonist of the D2 receptor, which is negatively coupled to adenylyl cyclase through G alpha i, did not induce potentiation. Although this slow D1/D5 agonist-induced potentiation is partially independent of N-methyl-D-aspartate receptors, it seems to share some steps with and is occluded by the late phase of long-term potentiation (LTP) produced by three repeated trains of nerve stimuli applied to the Schaffer collateral pathway. Similarly, the D1/D5 antagonist SCH 23390 attenuates the late phase of the LTP induced by repeated trains, and the D1/D5 agonist-induced potentiation is blocked by the protein synthesis inhibitor anisomycin. These results suggest that the D1/D5 receptor may be involved in the late, protein synthesis-dependent component of LTP in the hippocampal CA1 region, either as an ancillary component or as a mediator directly contributing to the late phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Alcohol-induced blackouts (ie, periods of anterograde amnesia) have received limited recent research attention. Objective: To examine the genetic epidemiology of lifetime blackouts and having had 3 or more blackouts in a year, including analyses controlling for the frequency of intoxication. Design, Setting, and Participants: Members of the young adult Australian Twin Register, a volunteer twin panel born between January 1, 1964, and December 3 1, 1971, were initially registered with the panel as children by their parents between 1980 and 1982. They underwent structured psychiatric telephone inter-views from February 1996 through September 2000. The current sample contains 2324 monozygotic and dizygotic twin pairs (mean [SDI age 29.9 [2.5] years) for whom both twins' responses were coded for blackout questions and for frequency of intoxication. Main Outcome Measure: Data on lifetime blackouts and having had 3 or more blackouts in a year were collected within an examination of the genetic epidemiology of alcoholism. Results: A lifetime history of blackouts was reported by 39.3% of women and 52.4% of men; 11.4% of women and 20.9% of men reported having had 3 or more blackouts in a year. The heritability of lifetime blackouts was 52.5% and that of having had 3 or more blackouts in a year was 57.8%. Models that controlled for frequency of intoxication found evidence of substantial genetic contribution unique to risk for the blackouts and a significant component of genetic risk shared with frequency of intoxication. Conclusions: The finding of a substantial genetic contribution to liability for alcohol-induced blackouts including a component of genetic loading shared with frequency of intoxication may offer important additional avenues to investigate susceptibility to alcohol-related problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous work had shown that the ratio of NMDA receptor NR1 subunit mRNA transcripts containing an N-terminal splice cassette to those that do not is markedly lower in regions of the Alzheimer's disease (AD) brain that are susceptible to pathological damage, compared with spared regions in the same cases or homotropic regions in controls. To elucidate the origins of this difference in proportionate expression, we measured the absolute levels of each of the eight NR1 transcripts by quantitative internally standardized RT-PCR assay. Expression of transcripts with the cassette was strongly attenuated in susceptible regions of Alzheimer's brain, whereas expression of non-cassette transcripts differed little from that in controls. The expression of other NR1 splice variants was not associated with pathology relevant to disease status, although some combinations of splice cassettes were well maintained in AD cases. The population profile of NR1 transcripts in occipital cortex differed from the profiles in other brain regions studied. Western analysis confirmed that the expression of protein isoforms containing the N-terminal peptide was very low in susceptible areas of the Alzheimer's brain. Cells that express NR1 subunits with the N-terminal cassette may be selectively vulnerable to toxicity in AD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1 The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. 2 In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. 3 The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per similar to20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. 4 The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. 5 The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT = 5-methyltryptamine > tryptamine > 7-methyltryptamine > 5-HTmuch greater than tryptophan melatonin. 6 Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.