936 resultados para Cyclic division algebras
Resumo:
The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of alpha 5 beta gamma GABA(A) receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.
Resumo:
Synthesis of amphiphilic, cyclic di- and tetrasaccharides, which incorporate a methylene moiety at the inter-glycosidic bond, is reported. The amphiphilic properties of the new cyclic tetrasaccharide host were identified through assessing the solubilities of guests in aqueous and in organic solvents. The glycosidic bond stability of the cyclic tetrasaccharide under aqueous acidic condition was also verified.
Resumo:
The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A number of functionalized beta-amino and gamma-amino sulfides and selenides have been synthesized involving a one-pot process of ring opening of cyclic sulfamidates with `in situ' generated thiolate and selenoate species from diaryl disulfides and diphenyl diselenide using rongalite. A mild and efficient method has been developed for the synthesis of cysteines from serine.
Resumo:
We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.
Resumo:
FtsE is one of the earliest cell division proteins that assembles along with FtsX at the mid-cell site during cell division in Escherichia coli. Both these proteins are highly conserved across diverse bacterial genera and are predicted to constitute an ABC transporter type complex, in which FtsE is predicted to bind ATP and hydrolyse it, and FtsX is predicted to be an integral membrane protein. We had earlier reported that the MtFtsE of the human pathogen, Mycobacterium tuberculosis, binds ATP and interacts with MtFtsX on the cell membrane of M. tuberculosis and E. coli. In this study, we demonstrate that MtFtsE is an ATPase, the active form of which is a dimer, wherein the participating monomers are held together by non-covalent interactions, with the Cys84 of each monomer present at the dimer interface. Under oxidising environment, the dimer gets stabilised by the formation of Cys84-Cys84 disulphide bond. While the recombinant MtFtsE forms a dimer on the membrane of E. coli, the native MtFtsE seems to be in a different conformation in the M. tuberculosis membrane. Although disulphide bridges were not observed on the cytoplasmic side (reducing environment) of the membrane, the two participating monomers could be isolated as dimers held together by non-covalent interactions. Taken together, these findings show that MtFtsE is an ATPase in the non-covalent dimer form, with the Cys84 of each monomer present in the reduced form at the dimer interface, without participating in the dimerisation or the catalytic activity of the protein.
Resumo:
There has been a lot of work in the literature, related to the mapping of boundaries of regions, using multiple agents. Most of these are based on optimization techniques or rely on potential fields to drive the agents towards the boundary and then retain them there while they space out evenly along the perimeter or surface (in two-dimensional and three-dimensional cases, respectively). In this paper an algorithm to track the boundary of a region in space is provided based on the cyclic pursuit scheme. This enables the agents to constantly move along the perimeter in a cluster, thereby tracking a dynamically changing boundary. The trajectories of the agents provide a sketch of the boundary. The use of multiple agents may facilitate minimization of tracking error by providing accurate estimates of points on the boundary, besides providing redundancy. Simulation results are provided to highlight the performance of the proposed scheme.
Resumo:
In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Phase-change cooling technique is a suitable method for thermal management of electronic equipment subjected to transient or cyclic heat loads. The thermal performance of a phase-change based heat sink under cyclic heat load depends on several design parameters, namely, applied heat flux, cooling heat transfer coefficient, thermophysical properties of phase-change materials (PCMs), and physical dimensions of phase-change storage system during melting and freezing processes. A one-dimensional conduction heat transfer model is formulated to evaluate the effectiveness of preliminary design of practical PCM-based energy storage units. In this model, the phase-change process of the PCM is divided into melting and solidification subprocesses, for which separate equations are written. The equations are solved sequentially and an explicit closed-form solution is obtained. The efficacy of analytical model is estimated by comparing with a finite-volume-based numerical solution for both transient and cyclic heat loads.
Resumo:
The bacterial second messengers (p)ppGpp and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulate important functions, such as transcription, virulence, biofilm formation, and quorum sensing. In mycobacteria, they regulate long-term survival during starvation, pathogenicity, and dormancy. Recently, a Pseudomonas aeruginosa strain lacking (p) ppGpp was shown to be sensitive to multiple classes of antibiotics and defective in biofilm formation. We were interested to find out whether Mycobacterium smegmatis strains lacking the gene for either (p)ppGpp synthesis (Delta rel(Msm)) or c-di-GMP synthesis (Delta dcpA) would display similar phenotypes. We used phenotype microarray technology to compare the growth of the wild-type and the knockout strains in the presence of several antibiotics. Surprisingly, the Delta rel(Msm) and Delta dcpA strains showed enhanced survival in the presence of many antibiotics, but they were defective in biofilm formation. These strains also displayed altered surface properties, like impaired sliding motility, rough colony morphology, and increased aggregation in liquid cultures. Biofilm formation and surface properties are associated with the presence of glycopeptidolipids (GPLs) in the cell walls of M. smegmatis. Thin-layer chromatography analysis of various cell wall fractions revealed that the levels of GPLs and polar lipids were reduced in the knockout strains. As a result, the cell walls of the knockout strains were significantly more hydrophobic than those of the wild type and the complemented strains. We hypothesize that reduced levels of GPLs and polar lipids may contribute to the antibiotic resistance shown by the knockout strains. Altogether, our data suggest that (p)ppGpp and c-di-GMP may be involved in the metabolism of glycopeptidolipids and polar lipids in M. smegmatis.
Resumo:
GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem(GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.
Resumo:
The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.
Resumo:
One-step synthesis of a cyclic 2,17-dioxo3,3](4,4') biphenylophane (MC) was achieved in high yield; its structure was verified by single crystal X-ray analysis. As a first example, a microporous polymer network was formed from macrocycle MC via acid-catalysed cyclotrimerization yielding a BET surface area of ca. 570 m(2) g(-1).