970 resultados para Ct Scans
Resumo:
Introduction: Computer-Aided-Design (CAD) and Computer-Aided-Manufacture (CAM) has been developed to fabricate fixed dental restorations accurately, faster and improve cost effectiveness of manufacture when compared to the conventional method. Two main methods exist in dental CAD/CAM technology: the subtractive and additive methods. While fitting accuracy of both methods has been explored, no study yet has compared the fabricated restoration (CAM output) to its CAD in terms of accuracy. The aim of this present study was to compare the output of various dental CAM routes to a sole initial CAD and establish the accuracy of fabrication. The internal fit of the various CAM routes were also investigated. The null hypotheses tested were: 1) no significant differences observed between the CAM output to the CAD and 2) no significant differences observed between the various CAM routes. Methods: An aluminium master model of a standard premolar preparation was scanned with a contact dental scanner (Incise, Renishaw, UK). A single CAD was created on the scanned master model (InciseCAD software, V2.5.0.140, UK). Twenty copings were then fabricated by sending the single CAD to a multitude of CAM routes. The copings were grouped (n=5) as: Laser sintered CoCrMo (LS), 5-axis milled CoCrMo (MCoCrMo), 3-axis milled zirconia (ZAx3) and 4-axis milled zirconia (ZAx4). All copings were micro-CT scanned (Phoenix X-Ray, Nanotom-S, Germany, power: 155kV, current: 60µA, 3600 projections) to produce 3-Dimensional (3D) models. A novel methodology was created to superimpose the micro-CT scans with the CAD (GOM Inspect software, V7.5SR2, Germany) to indicate inaccuracies in manufacturing. The accuracy in terms of coping volume was explored. The distances from the surfaces of the micro-CT 3D models to the surfaces of the CAD model (CAD Deviation) were investigated after creating surface colour deviation maps. Localised digital sections of the deviations (Occlusal, Axial and Cervical) and selected focussed areas were then quantitatively measured using software (GOM Inspect software, Germany). A novel methodology was also explored to digitally align (Rhino software, V5, USA) the micro-CT scans with the master model to investigate internal fit. Fifty digital cross sections of the aligned scans were created. Point-to-point distances were measured at 5 levels at each cross section. The five levels were: Vertical Marginal Fit (VF), Absolute Marginal Fit (AM), Axio-margin Fit (AMF), Axial Fit (AF) and Occlusal Fit (OF). Results: The results of the volume measurement were summarised as: VM-CoCrMo (62.8mm3 ) > VZax3 (59.4mm3 ) > VCAD (57mm3 ) > VZax4 (56.1mm3 ) > VLS (52.5mm3 ) and were all significantly different (p presented as areas with different colour. No significant differences were observed at the internal aspect of the cervical aspect between all groups of copings. Significant differences (p< M-CoCrMo Internal Occlusal, Internal Axial and External Axial 2 ZAx3 > ZAx4 External Occlusal, External Cervical 3 ZAx3 < ZAx4 Internal Occlusal 4 M-CoCrMo > ZAx4 Internal Occlusal and Internal Axial The mean values of AMF and AF were significantly (p M-CoCrMo and CAD > ZAx4. Only VF of M-CoCrMo was comparable with the CAD Internal Fit. All VF and AM values were within the clinically acceptable fit (120µm). Conclusion: The investigated CAM methods reproduced the CAD accurately at the internal cervical aspect of the copings. However, localised deviations at axial and occlusal aspects of the copings may suggest the need for modifications in these areas prior to fitting and veneering with porcelain. The CAM groups evaluated also showed different levels of Internal Fit thus rejecting the null hypotheses. The novel non-destructive methodologies for CAD/CAM accuracy and internal fit testing presented in this thesis may be a useful evaluation tool for similar applications.
Resumo:
X-ray computed tomography (CT) provides an insight into the progression of dissolution in the tests of planktonic foraminifera. Four species of foraminifera (G. ruber [white], G. sacculifer, N. dutertrei and P. obliquiloculata) from Pacific, Atlantic and Indian Ocean core-top samples were examined by CT and SEM. Inner chamber walls began to dissolve at Delta[CO3**2-] values of 12-14 µmol/kg. Close to the calcite saturation horizon, dissolution and precipitation of calcite may occur simultaneously. Inner calcite of G. sacculifer, N. dutertrei and P. obliquiloculata from such sites appeared altered or replaced, whereas outer crust calcite was dense with no pores. Unlike the other species, there was no distinction between inner and outer calcite in CT scans of G. ruber. Empty calcite crusts of N. dutertrei and P. obliquiloculata were most resistant to dissolution and were present in samples where Delta[CO3**2-] ~ -20 µmol/kg. Five stages of preservation were identified in CT scans, and an empirical dissolution index, XDX, was established. XDX appears to be insensitive to initial test mass. Mass loss in response to dissolution was similar between species and sites at ~ 0.4 µg/µmol/kg. We provide calibrations to estimate Delta[CO3**2-] and initial test mass from XDX.
Resumo:
When ligaments within the wrist are damaged, the resulting loss in range of motion and grip strength can lead to reduced earning potential and restricted ability to perform important activities of daily living. Left untreated, ligament injuries ultimately lead to arthritis and chronic pain. Surgical repair can mitigate these issues but current procedures are often non-anatomic and unable to completely restore the wrist’s complex network of ligaments. An inability to quantitatively assess wrist function clinically, both before and after surgery, limits the ability to assess the response to clinical intervention. Previous work has shown that bones within the wrist move in a similar pattern across people, but these patterns remain challenging to predict and model. In an effort to quantify and further develop the understanding of normal carpal mechanics, we performed two studies using 3D in vivo carpal bone motion analysis techniques. For the first study, we measured wrist laxity and performed CT scans of the wrist to evaluate 3D carpal bone positions. We found that through mid-range radial-ulnar deviation range of motion the scaphoid and lunate primarily flexed and extended; however, there was a significant relationship between wrist laxity and row-column behaviour. We also found that there was a significant relationship between scaphoid flexion and active radial deviation range of motion. For the second study, an analysis was performed on a publicly available database. We evaluated scapholunate relative motion over a full range of wrist positions, and found that there was a significant amount of variation in the location and orientation of the rotation axis between the two bones. Together the findings from the two studies illustrate the complexity and subject specificity of normal carpal mechanics, and should provide insights that can guide the development of anatomical wrist ligament repair surgeries that restore normal function.
Resumo:
Background: Individuals with chronic obstructive pulmonary disease (COPD) have higher than normal ventilatory equivalents for carbon dioxide (VE/VCO2) during exercise. There is growing evidence that emphysema on thoracic computed tomography (CT) scans is associated with poor exercise capacity in COPD patients with only mild-to-moderate airflow obstruction. We hypothesized that emphysema is an underlying cause of microvascular dysfunction and ventilatory inefficiency, which in turn contributes to reduced exercise capacity. We expected ventilatory inefficiency to be associated with a) the extent of emphysema; b) lower diffusing capacity for carbon monoxide; c) a reduced pulmonary blood flow response to exercise; and d) reduced exercise capacity. Methods: In a cross-sectional study, 19 subjects with mild-to-moderate COPD (mean ± SD FEV1= 82 ± 13% predicted, 12 GOLD grade 1) and 26 age-, sex-, and activity-matched controls underwent a ramp-incremental symptom-limited exercise test on a cycle ergometer. Ventilatory inefficiency was assessed by the minimum VE/VCO2 value (nadir). A subset of subjects also completed repeated constant work rate exercise bouts with non-invasive measurements of pulmonary blood flow. Emphysema was quantified as the percentage of attenuation areas below -950 Housefield Units on CT scans. An electronic scoresheet was used to keep track of emphysema sub-types. Results: COPD subjects typically had centrilobular emphysema (76.8 ± 10.1% of total emphysema) in the upper lobes (upper/lower lobe ratio= 0.82 ± 0.04). They had lower peak oxygen uptake (VO2), higher VE/VCO2 nadir and greater dyspnea scores than controls (p<0.05). Lower peak O2 and worse dyspnea were found in COPD subjects with VE/VCO2 nadirs ≥ 30. COPD subjects had blunted increases in pulmonary blood flow from rest to iso-VO2 exercise (p<0.05). Higher VE/VCO2 nadir in COPD subjects correlated with emphysema severity (r= 0.63), which in turn correlated with reduced lung diffusing capacity (r= -0.72) and blunted changes in pulmonary blood flow from rest to exercise (r= -0.69) (p<0.01). Conclusions: Ventilation “wasted” in emphysematous areas is associated with reduced exercise ventilatory efficiency in mild-to-moderate COPD. Exercise ventilatory inefficiency links structure (emphysema) and function (gas transfer) to a key clinical outcome (reduced exercise capacity) in COPD patients with modest spirometric abnormalities.
Resumo:
Extra Ovarian Primary Peritoneal Carcinoma (EOPPC) is a rare type of adenocarcinoma of the pelvic and abdominal peritoneum. The objective examination and the histological aspect of the neoplasia virtually overlaps with that of ovarian carcinoma. The reported case is that of a 72 year-old patient who had undergone a total hysterectomy with bilateral annessiectomy surgery 20 years earlier subsequently to a diagnosis for uterine leiomyomatosis. The patient came to our attention presenting recurring abdominal pain, constipation, weight loss, severe asthenia and fever. Her blood test results showed hypochromic microcytic anemia and a remarkable increase CA125 marker levels. Instrumental diagnostics with Ultrasound (US) and CT scans indicated the presence of a single peritoneal mass (10-12 cm diameter) close to the great epiploon. The patient was operated through a midline abdominal incision and the mass was removed with the great omentum. No primary tumor was found anywhere else in the abdomen and in the pelvis. The operation lasted approximately 50 minutes. The post-operative course was normal and the patient was discharged four days later. The histological exam of the neoplasia, supported by immunohistochemical analysis, showed a significant positivity for CA 125, vimentin and cytocheratin, presence of psammoma bodies, and cytoarchitectural pattern resembling that of a serous ovarian carcinoma even in absence of primitiveness, leading to a final diagnosis of EOPPC. The patient later underwent six cycles of chemotherapy with paclitaxel (135 mg/m2/24 hr) in association with cisplatin (75mg/m2). At the fourth year follow-up no sign of relapse was observed. .
Resumo:
Background: The use of artificial endoprostheses has become a routine procedure for knee and hip joints while ankle arthritis has traditionally been treated by means of arthrodesis. Due to its advantages, the implantation of endoprostheses is constantly increasing. While finite element analyses (FEA) of strain-adaptive bone remodelling have been carried out for the hip joint in previous studies, to our knowledge there are no investigations that have considered remodelling processes of the ankle joint. In order to evaluate and optimise new generation implants of the ankle joint, as well as to gain additional knowledge regarding the biomechanics, strain-adaptive bone remodelling has been calculated separately for the tibia and the talus after providing them with an implant. Methods: FE models of the bone-implant assembly for both the tibia and the talus have been developed. Bone characteristics such as the density distribution have been applied corresponding to CT scans. A force of 5,200 N, which corresponds to the compression force during normal walking of a person with a weight of 100 kg according to Stauffer et al., has been used in the simulation. The bone adaptation law, previously developed by our research team, has been used for the calculation of the remodelling processes. Results: A total bone mass loss of 2% in the tibia and 13% in the talus was calculated. The greater decline of density in the talus is due to its smaller size compared to the relatively large implant dimensions causing remodelling processes in the whole bone tissue. In the tibia, bone remodelling processes are only calculated in areas adjacent to the implant. Thus, a smaller bone mass loss than in the talus can be expected. There is a high agreement between the simulation results in the distal tibia and the literature regarding. Conclusions: In this study, strain-adaptive bone remodelling processes are simulated using the FE method. The results contribute to a better understanding of the biomechanical behaviour of the ankle joint and hence are useful for the optimisation of the implant geometry in the future.
Resumo:
Background and Purpose—High blood pressure (BP) is present in 80% of patients with acute ischemic stroke and is independently associated with poor outcome. There are few data examining the relationship between admission BP and acute CT findings. Methods—TAIST was a randomized controlled trial assessing 10 days of treatment with tinzaparin versus aspirin in 1489 patients with acute ischemic stroke (48 hr) with admission BP of 220/120 mm Hg. CT brain scans were performed before randomization and after 10 days. The relationships between baseline BP and adjudicated CT findings were assessed. Odds ratios per 10 mm Hg change in BP were calculated. Results—Higher systolic BP (SBP) was associated with abnormal CT scans because of independent associations with chronic changes of leukoariosis (OR, 1.12; 95% CI, 1.05–1.17) and old infarction (OR, 1.12; 95% CI, 1.06 –1.17) at baseline, and signs of visible infarction at day 10 (OR, 1.06; 95% CI, 1.00 –1.13). A lower SBP was associated with signs of acute infarction (OR, 0.94; 95% CI, 0.89–0.99). Hemorrhagic transformation, dense middle cerebral artery sign, mass effect, and cerebral edema at day 10 were not independently associated with baseline BP. Conclusion—Although high baseline BP is independently associated with a poor outcome after stroke, this was not shown to be through an association with increased hemorrhagic transformation, cerebral edema, or mass effect; trial design may be suboptimal to detect this. Higher SBP is associated with visible infarction on day 10 scans. The influence of changing BP in acute stroke on CT findings is still to be ascertained.
Resumo:
Sachant que plusieurs maladies entrainent des lésions qui ne sont pas toujours observables à l’oeil, cette étude préliminaire en paléopathologie humaine utilise une approche complémentaire issue de l’imagerie médicale, le ct-scan, afin de fournir des diagnostics plus précis. L’objectif est donc de tester ici l’efficacité et les limites de l’analyse scanographique durant l’analyse de spécimens archéologiques. Un échantillon de 55 individus a été sélectionné à partir de la collection ostéologique provenant du cimetière protestant St. Matthew (ville de Québec, 1771 – 1860). Une analyse macroscopique et scanographique complète a alors été effectuée sur chaque squelette. Les observations macroscopiques ont consisté à enregistrer une dizaine de critères standardisés par la littérature de référence en lien avec des manifestations anormales à la surface du squelette. Les ct-scans ont été réalisés à l’Institut National de la Recherche Scientifique de la Ville de Québec avec un tomodensitomètre Somatom de Siemens (définition AS+ 128). Les données scanographiques ont permis d’enregistrer une série de critères complémentaires sur la structure interne de l’os (amincissement/épaississement de la corticale, variation de densité, etc.) Selon la méthode du diagnostic différentiel, des hypothèses ou diagnostics ont été proposés. Ils sont principalement basés sur les critères diagnostiques mentionnés dans les manuels de référence en paléopathologie, mais aussi à l’aide de la littérature clinique et l’expertise de médecins. Les résultats présentés ici supportent que: 1) Dans 43% des cas, les données scanographiques ont apporté des informations essentielles dans la diagnose pathologique. Cette tendance se confirme en fonction de certaines maladies, mais pas d’autres, car certains diagnostics ne peuvent se faire sans la présence de tissus mous. 2) La distribution spatiale de la plupart des lésions varie selon les régions anatomiques, aussi bien en macroscopie qu’en scanographie. 3) Certains types de maladie semblent associés à l’âge et au sexe, ce qui est conforté par la littérature. 4) Cette recherche démontre aussi que le processus de diagnose nécessite, dans 38% des cas, une analyse complémentaire (ex. histologie, scintigraphie, radiographie) pour préciser le diagnostic final.
Resumo:
Sachant que plusieurs maladies entrainent des lésions qui ne sont pas toujours observables à l’oeil, cette étude préliminaire en paléopathologie humaine utilise une approche complémentaire issue de l’imagerie médicale, le ct-scan, afin de fournir des diagnostics plus précis. L’objectif est donc de tester ici l’efficacité et les limites de l’analyse scanographique durant l’analyse de spécimens archéologiques. Un échantillon de 55 individus a été sélectionné à partir de la collection ostéologique provenant du cimetière protestant St. Matthew (ville de Québec, 1771 – 1860). Une analyse macroscopique et scanographique complète a alors été effectuée sur chaque squelette. Les observations macroscopiques ont consisté à enregistrer une dizaine de critères standardisés par la littérature de référence en lien avec des manifestations anormales à la surface du squelette. Les ct-scans ont été réalisés à l’Institut National de la Recherche Scientifique de la Ville de Québec avec un tomodensitomètre Somatom de Siemens (définition AS+ 128). Les données scanographiques ont permis d’enregistrer une série de critères complémentaires sur la structure interne de l’os (amincissement/épaississement de la corticale, variation de densité, etc.) Selon la méthode du diagnostic différentiel, des hypothèses ou diagnostics ont été proposés. Ils sont principalement basés sur les critères diagnostiques mentionnés dans les manuels de référence en paléopathologie, mais aussi à l’aide de la littérature clinique et l’expertise de médecins. Les résultats présentés ici supportent que: 1) Dans 43% des cas, les données scanographiques ont apporté des informations essentielles dans la diagnose pathologique. Cette tendance se confirme en fonction de certaines maladies, mais pas d’autres, car certains diagnostics ne peuvent se faire sans la présence de tissus mous. 2) La distribution spatiale de la plupart des lésions varie selon les régions anatomiques, aussi bien en macroscopie qu’en scanographie. 3) Certains types de maladie semblent associés à l’âge et au sexe, ce qui est conforté par la littérature. 4) Cette recherche démontre aussi que le processus de diagnose nécessite, dans 38% des cas, une analyse complémentaire (ex. histologie, scintigraphie, radiographie) pour préciser le diagnostic final.
Resumo:
With population ageing, spine diseases have an increasing prevalence and induce high economic and social costs. The development of minimally invasive surgeries allows reducing the surgery-associated risks in elderly and polymorbid patients, and save costs by treating more patients in shorter time and reducing the complications. Percutaneous Cement Discoplasty (PCD) is a minimally invasive technique developed to treat highly degenerated intervertebral discs exhibiting a vacuum phenomenon. Filling the disc with bone cement creates a stand-alone spacer which partially restores the disc height and re-opens the foraminal space. PCD has recently been introduced to clinical use. However, the spine biomechanics following this treatment remained unravelled. The aim of this PhD thesis is to bridge the clinical experience with in vitro methodologies, to provide a multilateral evaluation of PCD outcome and a better understanding of its impact on the spine biomechanics, and of its possible contraindications. Firstly, a suitable in vitro porcine model to test the biomechanics of discoplasty by comparing specimens in the preoperative and postoperative conditions was developed. The methodology was then applied to investigate the biomechanics of discoplasty in cadaveric human segments. The in vitro specimens were mechanically investigated in flexion and extension, while a DIC system quantified the range of motion, disc height, and strains on the disc surface. Then, a versatile tool to measure the impact of discoplasty on the foramen space was developed and applied both to clinical and experimental work. The vertebrae reconstructed from CT scans were registered to match the loading configuration, using ex vivo DIC measurements under loading. The foramen volumetric changes caused by PCD was measured using a 3D geometrical method clinically developed by the research group. In conclusion, this project significantly extended the understanding of PCD biomechanics, highlighting its benefits in the treatment of advanced cases of intervertebral disc degeneration.
Resumo:
Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.
Resumo:
AIMS: The present is a retrospective evaluation of acute genito-urinary (GU) and gastro-intestinal (GI) toxicity, in addition to biochemical recurrence rate in 57 prostate cancer patients treated at our Institution with ultra-hypofractionated RT (UHRT) schedule. METHODS: From January 2021 to December 2022 we have treated 57 patients with prostate cancer, using an UHRT scheme of 5-fractions every other day for a total dose delivered of 36.25 Gy, according to the PACE-B trial treatment schedule. Good urinary function, assessed by International Prostate Symptom Score (IPSS), were required. The simulation CT scans were acquired in supine position and fused with MRI for CTVs definition for every patient. Each treatment was performed by Accuray's TomoTherapy with daily IGRT. The evaluation of the set-up was very restrictive before daily treatment delivery. RESULTS: According to RTOG toxicity scale, the acute GU toxicity at 3 months from RT, GU toxicity was G0 for 30 patients (52.6%), G1 for 26 (45.6%) and G2 for one only (1.75%); rectal toxicity was G0 for 56 patients (98.25%) and G1 for one only (1.75%). The median follow-up (FU) was 9 months (2-24 months). In the following FU months, we observed progressively lower urinary and rectal toxicity, except for one patient who showed G2 GU toxicity at 12 months. All but one patient had a progressive PSA value decrease. CONCLUSIONS: In our experience, UHRT appears to be safe and well tolerated even without the use of rectal spacer devices. A longer FU is necessary to evaluate late toxicity and disease control rate.
Resumo:
Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).
Resumo:
The aim of this study was to evaluate and compare organ doses delivered to patients in wrist and petrous bone examinations using a multislice spiral computed tomography (CT) and a C-arm cone-beam CT equipped with a flat-panel detector (XperCT). For this purpose, doses to the target organ, i.e. wrist or petrous bone, together with those to the most radiosensitive nearby organs, i.e. thyroid and eye lens, were measured and compared. Furthermore, image quality was compared for both imaging systems and different acquisition modes using a Catphan phantom. Results show that both systems guarantee adequate accuracy for diagnostic purposes for wrist and petrous bone examinations. Compared with the CT scanner, the XperCT system slightly reduces the dose to target organs and shortens the overall duration of the wrist examination. In addition, using the XperCT enables a reduction of the dose to the eye lens during head scans (skull base and ear examinations).
Resumo:
To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K2HPO4 solutions were measured. The relationship between CT number and K2HPO4 concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results The relationship between K2HPO4 concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.