922 resultados para Crustacean genetics
Resumo:
Decapoda taken in Continuous Plankton Recorder (CPR) samples from the Pacific in 1997 and 2000-2003 have been identified and measured. Some previously un-described larval stages were referred to species and characteristics of these are described. Distributions and seasonal occurrence of decapod taxa in the samples are described and discussed with particular emphasis on the dendrobranchiate shrimp Sergestes similis and the brachyurans Cancer spp. And Chionoecetes spp. There is a prolonged larval season at low levels of abundance off the Californian coast but in the more northern waters there is a shorter productive period but numbers of larvae per sample are high, particularly in June. Larvae of Chionoecetes and other Oregoninae were found only from May to July.
Resumo:
This paper is concerned with the ways in which people who work in and use a cancer genetics clinic in the UK talk about the ‘gene for cancer’. By conceptualising such a gene as a boundary object, and using empirical data derived from clinic consultations, observations in a genetics laboratory and interviews with patients, the author seeks to illustrate how the various parties involved adopt different discursive strategies to appropriate, describe and understand what is apparently the ‘same’ thing. The consequent focus on the ways in which the rhetorical and syntactical features of lay and professional talk interlink and diverge, illustrates not merely how our contemporary knowledge of genes and genetics is structured, but also how different publics position themselves with respect to the biochemistry of life.
Resumo:
The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians has been set up. The working plan is to: (a) collect DNA and information on the health status from an unprecedented number of long-lived 90+ sibpairs (n = 2650) and of younger ethnically matched controls (n = 2650) from 11 European countries; (b) perform a genome-wide linkage scannning in all the sibpairs (a total of 5300 individuals); this investigation will be followed by linkage disequilibrium mapping (LD mapping) of the candidate chromosomal regions; (c) study in cases (i.e., the 2650 probands of the sibpairs) and controls (2650 younger people), genomic regions (chromosome 4, D4S1564, chromosome 11, 11.p15.5) which were identified in previous studies as possible candidates to harbor longevity genes; (d) genotype all recruited subjects for apoE polymorphisms; and (e) genotype all recruited subjects for inherited as well as epigenetic variability of the mitochondrial DNA (mtDNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology, molecular genetics) are envisaged to identify the gene variant(s) of interest. The experimental design will also allow (a) to identify gender-specific genes involved in healthy aging and longevity in women and men stratified for ethnic and geographic origin and apoE genotype; (b) to perform a longitudinal survival study to assess the impact of the identified genetic loci on 90+ people mortality; and (c) to develop mathematical and statistical models capable of combining genetic data with demographic characteristics, health status, socioeconomic factors, lifestyle habits.
Resumo:
Glaciation over the Pleistocene induced dramatic range fluctuations for species across North America such that postglacial recolonization by southern refugial lineages has characterized the genetic structure of northern North American species. Based on the leading edge model of postglacial range expansion, dispersal and rapid population growth in these northern taxa is expected to produce vast areas of genetic homogeneity. Previous work on the widely distributed spring peeper (Pseudacris crucifer) revealed six distinct mitochondrial lineages that diverged between 3-11 mya, expanding and contracting with glacial cycles. Beginning 16,000 yBP, receding glaciers permitted Eastern lineage refugia residing in the southern Appalachians to migrate northward into the St. Lawrence Valley then westward through most of central Canada. Peripheral populations at the northwestern range limit of P. crucifer in central Manitoba are likely descended from this westward expanding Eastern lineage. According to the central-marginal hypothesis, founder effects from colonization as well as limited gene flow is expected to reveal genetic differentiation and lower genetic diversity in peripheral populations. The goal of my study is to further our understanding of peripheral range dynamics in peripheral Manitoba populations of P. crucifer by determining their genetic affinity and diversity relative to more central populations in Ontario and Minnesota. In this study I amplified and aligned cytochrome b sequences from sample sites across central Manitoba to reconstruct a Bayesian phylogeny for P. crucifer; additionally, microsatellite loci were genotyped to estimate genetic diversity. Results from this study affirmed Eastern lineage descent for peripheral Manitoba sites by aligning with Ontario. Initial colonization by the Interior lineage between glacial retreat and the appearance of arid vicariance events may explain the apparent introgression of non-Eastern lineages in Manitoba. However, genetic diversity measured in expected heterozygosity (H¬e) was not found to be significantly different in Manitoba genotypes. Greater isolation by distance and inbreeding relative to Ontario and Minnesota is likely the primary driver of genetic variation in these sites. Further sampling is necessary to generate a more complete genetic population structure for P. crucifer.