818 resultados para Creativity in the analytical setting
Resumo:
Aims- The goal of this study is to obtain a subjective point of view of the use, benefits, and shortcomings of the Via Christi breastfeeding Assessment Tool in a clinical setting. Methods- This case study is based on a single yet detailed interview with a lactation consultant who has utilized the Via Christi Breastfeeding Tool in a clinical setting. Findings- Advantages of the Via Christi Breastfeeding Assessment Tool include that the tool is practical and concrete, encompassing both a subjective dimension and the basic elements of breastfeeding. Shortcomings of the tool include its non-specificity in focus on the feeding technique only and excluding other factors involved with the birth and mother- baby couplet. Conclusion- The Via Christi Breastfeeding Tool serves as a good initial screening of breastfeeding, which in result leads to the recommendation of further and more extensive study of a specific mother-baby couplet breastfeeding measures if needed.
Resumo:
This dissertation develops and tests a comparative effectiveness methodology utilizing a novel approach to the application of Data Envelopment Analysis (DEA) in health studies. The concept of performance tiers (PerT) is introduced as terminology to express a relative risk class for individuals within a peer group and the PerT calculation is implemented with operations research (DEA) and spatial algorithms. The analysis results in the discrimination of the individual data observations into a relative risk classification by the DEA-PerT methodology. The performance of two distance measures, kNN (k-nearest neighbor) and Mahalanobis, was subsequently tested to classify new entrants into the appropriate tier. The methods were applied to subject data for the 14 year old cohort in the Project HeartBeat! study.^ The concepts presented herein represent a paradigm shift in the potential for public health applications to identify and respond to individual health status. The resultant classification scheme provides descriptive, and potentially prescriptive, guidance to assess and implement treatments and strategies to improve the delivery and performance of health systems. ^
Resumo:
Next to leisure, sport, and household activities, the most common activity resulting in medically consulted injuries and poisonings in the United States is work, with an estimated 4 million workplace related episodes reported in 2008 (U.S. Department of Health and Human Services, 2009). To address the risks inherent to various occupations, risk management programs are typically put in place that include worker training, engineering controls, and personal protective equipment. Recent studies have shown that such interventions alone are insufficient to adequately manage workplace risks, and that the climate in which the workers and safety program exist (known as the "safety climate") is an equally important consideration. The organizational safety climate is so important that many studies have focused on developing means of measuring it in various work settings. While safety climate studies have been reported for several industrial settings, published studies on assessing safety climate in the university work setting are largely absent. Universities are particularly unique workplaces because of the potential exposure to a diversity of agents representing both acute and chronic risks. Universities are also unique because readily detectable health and safety outcomes are relatively rare. The ability to measure safety climate in a work setting with rarely observed systemic outcome measures could serve as a powerful means of measure for the evaluation of safety risk management programs. ^ The goal of this research study was the development of a survey tool to measure safety climate specifically in the university work setting. The use of a standardized tool also allows for comparisons among universities throughout the United States. A specific study objective was accomplished to quantitatively assess safety climate at five universities across the United States. At five universities, 971 participants completed an online questionnaire to measure the safety climate. The average safety climate score across the five universities was 3.92 on a scale of 1 to 5, with 5 indicating very high perceptions of safety at these universities. The two lowest overall dimensions of university safety climate were "acknowledgement of safety performance" and "department and supervisor's safety commitment". The results underscore how the perception of safety climate is significantly influenced at the local level. A second study objective regarding evaluating the reliability and validity of the safety climate questionnaire was accomplished. A third objective fulfilled was to provide executive summaries resulting from the questionnaire to the participating universities' health & safety professionals and collect feedback on usefulness, relevance and perceived accuracy. Overall, the professionals found the survey and results to be very useful, relevant and accurate. Finally, the safety climate questionnaire will be offered to other universities for benchmarking purposes at the annual meeting of a nationally recognized university health and safety organization. The ultimate goal of the project was accomplished and was the creation of a standardized tool that can be used for measuring safety climate in the university work setting and can facilitate meaningful comparisons amongst institutions.^
Resumo:
1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction > 63 µ, total carbonate content, carbonate in fine fractions < 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the < 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.
Resumo:
Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm, which prompts interest in its capability for capturing the nature of different classes of series in a network context. We have recently shown [B. Luque et al., PLoS ONE 6, 9 (2011)] that dynamical systems can be studied from a novel perspective via the use of this method. Specifically, the period-doubling and band-splitting attractor cascades that characterize unimodal maps transform into families of graphs that turn out to be independent of map nonlinearity or other particulars. Here, we provide an in depth description of the HV treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree distributions, mean distances, clustering coefficients, etc., associated to the bifurcation cascades and their accumulation points. We describe how the resultant families of graphs can be framed into a renormalization group scheme in which fixed-point graphs reveal their scaling properties. These fixed points are then re-derived from an entropy optimization process defined for the graph sets, confirming a suggested connection between renormalization group and entropy optimization. Finally, we provide analytical and numerical results for the graph entropy and show that it emulates the Lyapunov exponent of the map independently of its sign.
Resumo:
At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.
Resumo:
In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.
Resumo:
As society becomes increasingly less binary, and moves towards a more spectrum based approach to mental illness, medical illness, and personality, it becomes necessary to address this shift within formerly rigid institutions. This paper explores this shift as it is occurring within correctional settings around the United States concerning the medical care, housing, and safety of transgendered inmates. As there is no legal standard for the housing or access to gender-affirming medical care (i.e., hormone therapy, sexual reassignment surgery), these issues are addressed on an institutional level, with very little consistency throughout the country. Currently, most institutions follow a genitalia-based system of classification. Within the system, core beliefs are held, some adaptive and some no longer adaptive, that drive the system's behavior and outcomes. With regard to transgendered inmates, several underlying beliefs within the system serve to maintain the status quo; however, the most basic underpinning is the system's reliance on a binary gender system. As views of humane treatment of the incarcerated expand and modernize, the role of mental health within corrections has also expanded. Psychologists, social workers, counselors, and psychiatrists are found in almost all correctional facilities, and have become a voice of advocacy for an often underserved population.
Resumo:
Official discourse in Singapore on social cohesion is often framed along the broad parameters of achieving racial and religious harmony. Many policies – formal and informal – and several laws evolved to manage these two aspects of society. Yet, as Singapore developed and with a much more complex socioeconomic environment both domestically and externally, there is perhaps a need to re-look the discourse and framework for discussing social cohesion. This paper takes a critical look at how the issue of social cohesion is framed in academic literature and policy discussions in Europe and the OECD, and tries to develop a broader analytical framework that could be useful in the Singapore context as it struggles with the multiple fault lines in society (beyond race and religion) that have emerged in the last decade or so.