876 resultados para Craniofacial Abnormalities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental question in developmental biology is to understand the mechanisms that govern the development of an adult individual from a single cell. Goosecoid (Gsc) is an evolutionarily conserved homeobox gene that has been cloned in vertebrates and in Drosophila. In mice, Gsc is first expressed during gastrulation stages where it marks anterior structures of the embryo, this pattern of expression is conserved among vertebrates. Later, expression is observed during organogenesis of the head, limbs and the trunk. The conserved pattern of expression of Gsc during gastrulation and gain of function experiments in Xenopus suggested a function for Gsc in the development of anterior structures in vertebrates. Also, its expression pattern in mouse suggested a role in morphogenesis of the head, limbs and trunk. To determine the functional requirement of Gsc in mice a loss of function mutation was generated by homologous recombination in embryonic stem cells and mice mutant for Gsc were generated.^ Gsc-null mice survived to birth but died hours after delivery. Phenotypic analysis revealed craniofacial and rib cage abnormalities that correlated with the second phase of Gsc expression in the head and trunk but no anomalies were found that correlated with its pattern of expression during gastrulation or limb development.^ To determine the mode of action of Gsc during craniofacial development aggregation chimeras were generated between Gsc-null and wild-type embryos. Chimeras were generated by the aggregation of cleavage stage embryos, taking advantage of two different Gsc-null alleles generated during gene targeting. Chimeras demonstrated a cell-autonomous function for Gsc during craniofacial development and a requirement for Gsc function in cartilage and mesenchymal tissues.^ Thus, during embryogenesis in mice, Gsc is not an essential component of gastrulation as had been suggested in previous experiments. Gsc is required for craniofacial development where it acts cell autonomously in cartilage and mesenchymal tissues. Gsc is also required for proper development of the rib cage but it is dispensable for limb development in mice. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) have been recognized as one of the most feared long-term complications of cancer therapy. The aim of this case-control study was to determine the prevalence of chromosomal abnormalities and family history of cancer among secondary AML/MDS cases and de novo AML/MDS controls. Study population were 332 MD Anderson Cancer Center patients who were registered between 1986 and 1994. Cases were patients who had a prior invasive cancer before diagnoses of AML/MDS and controls were de novo AML/MDS. Cases (166) and controls (166) were frequency matched on age $\pm$5 years, sex and year of diagnosis of leukemia. Cytogenetic data were obtained from the leukemia clinic database of MD Anderson Cancer Center and data on family history of cancer and other risk factors were abstracted from the patients' medical record. The distribution of AML and MDS among cases was 58% and 42% respectively and among controls 67% and 33% respectively. Prevalence of chromosomal abnormalities were observed more frequently among cases than controls. Reporting of family history of cancer were similar among both groups. Univariate analysis revealed an odds ratio (OR) of 2.8 (95% CI 1.5-5.4) for deletion of chromosome 7, 1.9 (95% CI 0.9-3.8) for deletion of chromosome 5, 2.3 (95% CI 0.8-6.2) for deletion of 5q, 2.0 (95% CI 1.0-4.2) for trisomy 8, 1.3 (95% CI 0.8-2.1) for chromosomal abnormalities other than chromosome 5 or 7 and 1.3 (95% CI 0.8-2.0) for family history of cancer in a first degree relative. The OR remained significant for deletion of chromosome 7 (2.3, 95% CI 1.1-4.8) after adjustment for age, alcohol, smoking, occupation related to chemical exposure and family history of cancer in a first degree relative. Of the 166 secondary AML/MDS patients 70% had a prior solid tumor and 30% experienced hematological cancers. The most frequent cancers were breast (21.1%), non-Hodgkin lymphoma (13.3%), Hodgkin's disease (10.2%), prostate (7.2%), colon (6%), multiple myeloma (3.6%) and testes (3.0%). The majority of these cancer patients were treated with chemotherapy or radiotherapy or both. Abnormalities of chromosome 5 or 7 were found to be more frequent in secondary AML/MDS patients with prior hematological cancer than patients with prior solid tumors. Median time to develop secondary AML/MDS was 5 years. However, secondary AML/MDS among patients who received chemotherapy and had a family history of cancer in a first degree relative occurred earlier (median 2.25 $\pm$ 0.9 years) than among patients without such family history (median 5.50 $\pm$ 0.18 years) (p $<$.03). The implication of exposure to chemotherapy among patients with a family history of cancer needs to be further investigated. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Unless effective preventive strategies are implemented, aging of the population will result in a significant worsening of the heart failure (HF) epidemic. Few data exist on whether baseline electrocardiographic (ECG) abnormalities can refine risk prediction for HF. METHODS We examined a prospective cohort of 2,915 participants aged 70 to 79 years without preexisting HF, enrolled between April 1997 and June 1998 in the Health, Aging, and Body Composition (Health ABC) study. Minnesota Code was used to define major and minor ECG abnormalities at baseline and at year 4 follow-up. Using Cox models, we assessed (1) the association between ECG abnormalities and incident HF and (2) the incremental value of adding ECG to the Health ABC HF Risk Score using the net reclassification index. RESULTS At baseline, 380 participants (13.0%) had minor, and 620 (21.3%) had major ECG abnormalities. During a median follow-up of 11.4 years, 485 participants (16.6%) developed incident HF. After adjusting for the Health ABC HF Risk Score variables, the hazard ratio (HR) was 1.27 (95% CI 0.96-1.68) for minor and 1.99 (95% CI 1.61-2.44) for major ECG abnormalities. At year 4, 263 participants developed new and 549 had persistent abnormalities; both were associated with increased subsequent HF risk (HR 1.94, 95% CI 1.38-2.72 for new and HR 2.35, 95% CI 1.82-3.02 for persistent ECG abnormalities). Baseline ECG correctly reclassified 10.5% of patients with HF events, 0.8% of those without HF events, and 1.4% of the overall population. The net reclassification index across the Health ABC HF risk categories was 0.11 (95% CI 0.03-0.19). CONCLUSIONS Among older adults, baseline and new ECG abnormalities are independently associated with increased risk of HF. The contribution of ECG screening for targeted prevention of HF should be evaluated in clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observed a hereditary phenotype in Alaskan Huskies, which was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier and an unrelated control revealed a 218 bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1 deficient mice have a much milder phenotype than either humans or dogs. Thus the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the non-intentional breeding of affected dogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Brain dysfunction is common in sepsis. We aimed to assess whether cerebral perfusion, oxygenation, and/or metabolism are abnormal during early endotoxemia, and how they may relate to potential neurohistological changes. METHODS In this prospective animal study, we included 12 pigs (weight: 42 ± 4 kg; mean ± SD) that were exposed to Escherichia coli lipopolysaccharide (E. coli LPS B0111 : B4, 0.4 μg/kg/h) or saline infusion (n = 6, each) for 10 h. Systemic hemodynamics, cerebral blood flow, intracranial pressure, and brain tissue oxygen tension were continuously measured. At the end of the experiment, formalin-fixed brains were cut in coronal sections and embedded in paraffin. Afterwards, the sections were cut at 5 microns and stained with hematoxylin and eosin. RESULTS Stable systemic hemodynamics in both groups were associated with higher carotid arterial blood flow after 10 h of endotoxemia (9.0 ± 2.2 ml/kg/min) compared to controls (6.6 ± 1.2 ml/kg/min; time-group interaction: P = 0.014). Intracranial pressure, cerebral perfusion pressure, brain oxygen consumption, and brain tissue oxygen tension were similar in both groups. In four of the six endotoxemic animals but in none of the controls, cerebral tissue lesions were found (encephalomalacia with spongy degeneration of white matter, axonal swelling, and ischemic neuronal thalamic necrosis), including significant venous vascular alterations, predominantly in the brainstem, in three of the four animals. CONCLUSIONS Early endotoxemia seems to be associated with histological signs of brain damage unrelated to systemic or cerebral hemodynamics or oxygenation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare facial development in subjects with complete unilateral cleft lip and palate (CUCLP) treated with two different surgical protocols. Lateral cephalometric radiographs of 61 patients (42 boys, 19 girls; mean age, 10.9 years; SD, 1) treated consecutively in Warsaw with one-stage repair and 61 age-matched and sex-matched patients treated in Oslo with two-stage surgery were selected to evaluate craniofacial morphology. On each radiograph 13 angular and two ratio variables were measured in order to describe hard and soft tissues of the facial region. The analysis showed that differences between the groups were limited to hard tissues – the maxillary prominence in subjects from the Warsaw group was decreased by almost 4° in comparison with the Oslo group (sella-nasion-A-point (SNA) = 75.3° and 79.1°, respectively) and maxillo-mandibular morphology was less favorable in the Warsaw group than the Oslo group (ANB angle = 0.8° and 2.8°, respectively). The soft tissue contour was comparable in both groups. In conclusion, inter-group differences suggest a more favorable outcome in the Oslo group. However, the distinctiveness of facial morphology in background populations (ie, in Poles and Norwegians) could have contributed to the observed results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities, and subdivided in TRPS I, caused by mutations in TRPS1, and TRPS II, caused by a contiguous gene deletion affecting (amongst others) TRPS1 and EXT1. We performed a collaborative international study to delineate phenotype, natural history, variability, and genotype-phenotype correlations in more detail. We gathered information on 103 cytogenetically or molecularly confirmed affected individuals. TRPS I was present in 85 individuals (22 missense mutations, 62 other mutations), TRPS II in 14, and in 5 it remained uncertain whether TRPS1 was partially or completely deleted. Main features defining the facial phenotype include fine and sparse hair, thick and broad eyebrows, especially the medial portion, a broad nasal ridge and tip, underdeveloped nasal alae, and a broad columella. The facial manifestations in patients with TRPS I and TRPS II do not show a significant difference. In the limbs the main findings are short hands and feet, hypermobility, and a tendency for isolated metacarpals and metatarsals to be shortened. Nails of fingers and toes are typically thin and dystrophic. The radiological hallmark are the cone-shaped epiphyses and in TRPS II multiple exostoses. Osteopenia is common in both, as is reduced linear growth, both prenatally and postnatally. Variability for all findings, also within a single family, can be marked. Morbidity mostly concerns joint problems, manifesting in increased or decreased mobility, pain and in a minority an increased fracture rate. The hips can be markedly affected at a (very) young age. Intellectual disability is uncommon in TRPS I and, if present, usually mild. In TRPS II intellectual disability is present in most but not all, and again typically mild to moderate in severity. Missense mutations are located exclusively in exon 6 and 7 of TRPS1. Other mutations are located anywhere in exons 4-7. Whole gene deletions are common but have variable breakpoints. Most of the phenotype in patients with TRPS II is explained by the deletion of TRPS1 and EXT1, but haploinsufficiency of RAD21 is also likely to contribute. Genotype-phenotype studies showed that mutations located in exon 6 may have somewhat more pronounced facial characteristics and more marked shortening of hands and feet compared to mutations located elsewhere in TRPS1, but numbers are too small to allow firm conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of the vertebrate face is an extremely complex developmental process, which needs to coordinate the outgrowth of several facial primordia. Facial primordia are small buds made up of mesenchymal masses enclosed by an epithelial layer that surrounds the primitive mouth. The upper jaw is formed by the maxillary process, the lateral nasal process, and the frontonasal process while the mandibular process forms the lower jaw. Recent experiments using genetics in mice and bead implantation approaches have shown that the pitx2 homeobox gene and Bmp signaling play important roles in this complex developmental process. However, the molecular mechanisms underlying the function of pitx2 and Bmp in these events are still unclear. Here, we show that pitx2 is required for oral epithelium maintenance, and branchial arch signaling is pitx2 dosage sensitive by using pitx2 allelic combinations that encode varying levels of pitx2. Maintenance of fgf8 signaling requires only low pitx2 dosage while repression of Bmp signaling requires high pitx2 levels. Different incisor and molar phenotypes in low level pitx2 mutant embryos suggest a distinct requirement for pitx2 in tooth-type development. The results show that pitx2 is required for craniofacial muscle formation and expanded Bmp signaling results in excess bone formation in pitx2 mutant embryos. Fate-mapping studies show that ectopic bone results from excessive bone growth, instead of muscle transformation. Moreover, by using cre/loxp system we show that partial loss of Bmpr-IA in the facial primordia results in cleft lip/palate, abnormal teeth, ectopic teeth and tooth transformation. These phenotypes suggest that Bmp signaling has multiple functions during craniofacial development. The mutant palate shelves can fuse with each other when cultured in vitro, suggesting that cleft palate is secondary to the partial loss of Bmpr-IA. Furthermore, we prove that Bmp4, one of the ligands of Bmpr-IA, plays a role during lip fusion developmental process and partial loss of Bmp4 in the facial primordia results in the lip fusion delay. These results have provided insight to understand the complex signaling cascades that regulate craniofacial development. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted in partial fulfillment of the requirements for a Certificate in Orthodontics, Dept. of Orthodontics, University of Connecticut Health Center, 1977