960 resultados para Cr2O3-sensitized


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strain of Synechococcus sp. strain PCC 7942 with no functional Fe superoxide dismutase (SOD), designated sodB−, was characterized by its growth rate, photosynthetic pigments, and cyclic photosynthetic electron transport activity when treated with methyl viologen or norflurazon (NF). In their unstressed conditions, both the sodB− and wild-type strains had similar chlorophyll and carotenoid contents and catalase activity, but the wild type had a faster growth rate and higher cyclic electron transport activity. The sodB− was very sensitive to methyl viologen, indicating a specific role for the FeSOD in protection against superoxide generated in the cytosol. In contrast, the sodB− mutant was less sensitive than the wild type to oxidative stress imposed with NF. This suggests that the FeSOD does not protect the cell from excited singlet-state oxygen generated within the thylakoid membrane. Another up-regulated antioxidant, possibly the MnSOD, may confer protection against NF in the sodB− strain. These results support the hypothesis that different SODs have specific protective functions within the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal-based quantum dots (QDs) have demonstrated to behave as efficient sensitizers in QD-sensitized solar cells (QDSSCs), as attested by the countless works and encouraging efficiencies reported so far. However, their intrinsic toxicity has arisen as a major issue for the prospects of commercialization. Here, we examine the potential of environmentally friendly zinc copper indium sulfide (ZCIS) QDs for the fabrication of liquid-junction QDSSCs by means of photoelectrochemical measurements. A straightforward approach to directly adsorb ZCIS QDs on TiO2 from a colloidal dispersion is presented. Incident photon-to-current efficiency (IPCE) spectra of sensitized photoanodes show a marked dependence on the adsorption time, with longer times leading to poorer performances. Cyclic voltammograms point to a blockage of the channels of the mesoporous TiO2 film by the agglomeration of QDs as the main reason for the decrease in efficiency. Photoanodes were also submitted to the ZnS treatment. Its effects on electron recombination with the electrolyte are analyzed through electrochemical impedance spectroscopy and photopotential measurements. The corresponding results bring out the role of the ZnS coating as a barrier layer preventing electron leakage toward the electrolyte, as argued in other QD-sensitized systems. The beneficial effect of the ZnS coating is ultimately reflected on the power conversion efficiency of complete devices, reaching values of 2 %. In a more general vein, through these findings, we aim to call the attention to the potentiality of this quaternary alloy, virtually unexplored as a light harvester for sensitized devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor–acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappaB inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappaB inhibitor, signal phosphorylation of TCRzeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappaB determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappaB(-)CD40(-)class II+ DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to prime or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of alumina and chromite impurities on the liquidus temperatures in the cristobalite/tridymite (SiO2) primary phase fields in the MgO-FeO-SiO, system in equilibrium with metallic iron have been investigated experimentally. Using high temperature equilibration and quenching followed by electron probe X-ray microanalysis (EPMA), liquiclus isotherms have been determined in the temperatures range 1 673 to 1 898 K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO, system at 2, 3 and 5 wt% Al2O3, 2 wt% Cr2O3, and 2 wt% Cr2O3+2 wt% Al2O3. The study enables the liquidus to be described for a range of SiO2/MgO and MgO/FeO ratios. It was found that liquiclus temperatures in the cristobalite and tridymite primary phase fields, decrease significantly with the addition of Al2O3 and Cr2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis and functionalization of large-area graphene and its structural, electrical and electrochemical properties has been investigated. First, the graphene films, grown by thermal chemical vapor deposition (CVD), contain three to five atomic layers of graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction enhanced with increasing plasma treatment time, which is attributed to increase in catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the large scale graphene film is covalently functionalized with HNO3 for high efficiency electro-catalytic electrode for DSSC. The XPS and UPS confirm the covalent attachment of C-OH, C(O)OH and NO3- moieties with carbon atoms through sp2-sp3 hybridization and Fermi level shift of graphene occurs under different doping concentrations, respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Ωcm 2) and high exchange current density (J0~2.50 mAcm -2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The hybrid film is inverted and transferred to flexible substrates for its application in flexible electronics, demonstrating a distinguishable variation of electrical conductivity for both tension and compression. Furthermore, both turn-on field and total emission current was found to depend strongly on the bending radius of the film and were found to vary in ranges of 0.8 - 3.1 V/μm and 4.2 - 0.4 mA, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The different oxidation states of chromium allow its bulk oxide form to be reducible, facilitating the oxygen vacancy formation process, which is a key property in applications such as catalysis. Similar to other useful oxides such as TiO2, and CeO2, the effect of substitutional metal dopants in bulk Cr2O3 and its effect on the electronic structure and oxygen vacancy formation are of interest, particularly in enhancing the latter. In this paper, density functional theory (DFT) calculations with a Hubbard + U correction (DFT+U) applied to the Cr 3d and O 2p states, are carried out on pure and metal-doped bulk Cr2O3 to examine the effect of doping on the electronic and geometric structure. The role of dopants in enhancing the reducibility of Cr2O3 is examined to promote oxygen vacancy formation. The dopants are Mg, Cu, Ni, and Zn, which have a formal +2 oxidation state in their bulk oxides. Given this difference in host and, dopant oxidation states, we show that to predict the correct ground state two metal dopants charge compensated with an oxygen vacancy are required. The second oxygen atom removed is termed "the active" oxygen vacancy and it is the energy required to remove this atom that is related to the reduction process. In all cases, we find that substitutional doping improves the oxygen vacancy formation of bulk Cr2O3 by lowering the energy cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Zootecnista). -- Universidad de La Salle. Facultad de Ciencias Agropecuarias. Programa de Zootecnia, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition of disc-like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot stage Raman spectroscopy. The structure and morphology of α-CrO(OH) synthesised using hydrothermal treatment was confirmed by X-ray diffraction and transmission electron microscopy. The Raman spectrum of α-CrO(OH) is characterised by two intense bands at 823 and 630 cm-1 attributed to ν1 CrIII-O symmetric stretching mode, bands at 1179 cm-1 attributed to CrIII-OH δ deformation modes. No bands are observed above 3000 cm-1. The absence of characteristic OH vibrational bands may be due to short hydrogen bonds in the α-CrO(OH) structure. Upon thermal treatment of α-CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm-1, which are attributed to Cr2O3. This hot-stage Raman study shows that the transition of α-CrO(OH) to Cr2O3 occurs before 350 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromium oxide gel material was synthesised and appeared to be X-ray amorphous. The changes in the structure of the synthetic chromium oxide gel were investigated using hot-stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot-stage Raman spectra. Two bands were observed at 849 and 735 cm-1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O-CrIII-OH and O-CrIII-O. With temperature increase, the intensity of the band at 849 cm-1 decreased, while the band at 735 cm-1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O-CrIII-O units in the structure. A strongly hydrogen bonded water H-O-H bending band was found at 1704 cm-1 in the Raman spectrum of the chromium oxide gel, however this band shifted to around 1590 cm-1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm-1 attributed to the thermal decomposed product Cr2O3. The use of the hot-stage Raman microscope enabled low-temperature phase changes brought about through dehydration and dehydroxylation to be studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The indoline dyes D102, D131, D149, and D205 have been characterized when adsorved on fluorine-doped tin oxide (FTO) and TiO2 electrode surfaces. Adsorption from 50:50 acetonitrile - tert-butanol onto flourine-doped tin oxide (FTO) allows approximate Langmuirian binding constants of 6.5 x 10(4), 2.01 x 10(3), 2.0 x 10(4), and 1.5 x 10(4) mol-1 dm3, respectively, to be determined. Voltammetric data obtained in acetonitrile/0.1 M NBu4PF6 indicate reversible on-electron oxidation at Emid = 0.94, 0.91, 0.88, and 0.88 V vs Ag/AgCI(3 M KCI), respectively, with dye aggregation (at high coverage) causing additional peak features at more positive potentials. Slow chemical degradation processes and electron transfer catalysis for iodine oxidation were observed for all four oxidezed indolinium cations. When adsorbed onto TiO2 nanoparticle films (ca. 9nm particle diameter and ca.3/um thickness of FTO0, reversible voltammetric responses with Emid = 1.08, 1.156, 0.92 and 0.95 V vs Ag/AgCI(3 M KCI), respectively, suggest exceptionally fast hole hopping diffusion (with Dapp > 5 x 10(-9) m2 s-1) for adsorbed layers of four indoline dyes, presumably due to pie-pie stacking in surface aggregates. Slow dye degradation is shown to affect charge transport via electron hopping. Spectrelectrochemical data for the adsorbed indoline dyes on FTO-TiO2 revealed a red-shift of absorption peaks after oxidation and the presence of a strong charge transfer band in the near-IR region. The implications of the indoline dye reactivity and fast hole mobility for solar cell devices are discussed.