947 resultados para Coupled-wave theory
Resumo:
In order to relate macroscopic random motion (described e.g. by Langevin-type theories) to microscopic dynamics, we have undertaken the derivation of a Fokker-Planck-type equation from first microscopic principles. Both subsystems are subject to an external force field. Explicit expressions for the diffusion and drift coefficients are obtained, in terms of the field.
Resumo:
This thesis, based on the results of an organizational ethnography of a university-based feminist organization in Southern Ontario (the Centre), traces how third wave feminism is being constituted in the goals, initiatives, mandate, organizational structure, and overall culture of university-based feminist organizations. I argue that, from its inception, the meanings and goals of the Centre have been contested through internal critique, reflection, and discussion inspired by significant shifts in feminist theory that challenge the fundamental principles of second wave feminism. I identify a major shift in the development and direction of the Centre that occurs in two distinct phases. The first phase of the shift occurs with the emergence of an antioppression framework, which broadens the Centre's mandate beyond gender and sexism to consider multiple axes of identity and oppression that affect women's lives. The second phase of this shift is characterized by a focus on (trans) inclusion and accessibility and has involved changing the Centre's name so that it is no longer identified as a women's centre in order to reflect more accurately its focus on mUltiple axes of identity and oppression. Along with identifying two phases of a major shift in the direction of the Centre, I trace two discourses about its development. The dominant discourse of the Centre's development is one of progress and evolution. The dominant discourse characterizes the Centre as a dynamic feminist organization that consistently strives to be more inclusive and diverse. The reverse discourse undermines the dominant discourse by emphasizing that, despite the Centre's official attempts to be inclusive and to build diversity, little has actually changed, leaving women of colour marginalized in the Centre's dominant culture of whiteness. This research reveals that, while many of their strategies have unintended (negative) consequences, members of the Centre are working to build an inclusive politics of resistance that avoids the mistakes of earlier feminist movements and organizations. These members, along with other activists, actively constitute third wave feminism in a process that is challenging, contradictory, and often painful. A critical analysis of this process and the strategies it involves provides an opportunity for activists to reflect on their experiences and develop new strategies in an effort to further struggles for social justice and equity.
Resumo:
We have investigated the structure of double quantum dots vertically coupled at zero magnetic field within local-spin-density functional theory. The dots are identical and have a finite width, and the whole system is axially symmetric. We first discuss the effect of thickness on the addition spectrum of one single dot. Next we describe the structure of coupled dots as a function of the interdot distance for different electron numbers. Addition spectra, Hund's rule, and molecular-type configurations are discussed. It is shown that self-interaction corrections to the density-functional results do not play a very important role in the calculated addition spectra
Resumo:
A weak instability mode, associated with phase-locked counterpropagating coastal Kelvin waves in horizontal anticyclonic shear, is found in the semigeostrophic (SG) equations for stratified flow in a channel. This SG instability mode approximates a similar mode found in the Euler equations in the limit in which particle-trajectory slopes are much smaller than f/N, where f is the Coriolis frequency and N > f the buoyancy frequency. Though weak under normal parameter conditions, this instability mode is of theoretical interest because its existence accounts for the failure of an Arnol’d-type stability theorem for the SG equations. In the opposite limit, in which the particle motion is purely vertical, the Euler equations allow only buoyancy oscillations with no horizontal coupling. The SG equations, on the other hand, allow a physically spurious coastal “mirage wave,” so called because its velocity field vanishes despite a nonvanishing disturbance pressure field. Counterpropagating pairs of these waves can phase-lock to form a spurious “mirage-wave instability.” Closer examination shows that the mirage wave arises from failure of the SG approximations to be self-consistent for trajectory slopes f/N.
Resumo:
This paper represents the second part of a study of semi-geostrophic (SG) geophysical fluid dynamics. SG dynamics shares certain attractive properties with the better known and more widely used quasi-geostrophic (QG) model, but is also a good prototype for balanced models that are more accurate than QG dynamics. The development of such balanced models is an area of great current interest. The goal of the present work is to extend a central body of QG theory, concerning the evolution of disturbances to prescribed basic states, to SG dynamics. Part 1 was based on the pseudomomentum; Part 2 is based on the pseudoenergy. A pseudoenergy invariant is a conserved quantity, of second order in disturbance amplitude relative to a prescribed steady basic state, which is related to the time symmetry of the system. We derive such an invariant for the semi-geostrophic equations, and use it to obtain: (i) a linear stability theorem analogous to Arnol'd's ‘first theorem’; and (ii) a small-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit. The results are analogous to their quasi-geostrophic forms, and reduce to those forms in the limit of small Rossby number. The results are derived for both the f-plane Boussinesq form of semi-geostrophic dynamics, and its extension to β-plane compressible flow by Magnusdottir & Schubert. Novel features particular to semi-geostrophic dynamics include apparently unnoticed lateral boundary stability criteria. Unlike the boundary stability criteria found in the first part of this study, however, these boundary criteria do not necessarily preclude the construction of provably stable basic states. The interior semi-geostrophic dynamics has an underlying Hamiltonian structure, which guarantees that symmetries in the system correspond naturally to the system's invariants. This is an important motivation for the theoretical approach used in this study. The connection between symmetries and conservation laws is made explicit using Noether's theorem applied to the Eulerian form of the Hamiltonian description of the interior dynamics.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
We investigated noble gas copper bonds in linear complexes represented by the NgCuX general formula in which Ng and X stand for a noble gas (neon, argon, krypton, or xenon) and a halogen (fluorine, chlorine or bromine), respectively, by coupled cluster methods and modified cc-pVQZ basis sets. The quantum theory of atoms in molecules (QTAIM) shows a linear relation between the dissociation energy or noble gas-copper bonds and the amount of electronic charge transferred mainly from the noble gas to copper during complexation. Large changes in the QTAIM quadrupole moments of copper and noble gases resulting from this bonding and a comparison between NgCuX and NgNaCl systems indicate that these noble gas-copper bonds should be better interpreted as predominantly covalent. Finally, QTAIM atomic dipoles of noble gases in NgNaCl systems agree satisfactorily with atomic dipoles given by a simple model for these NgNa van der Waals bonds.
Resumo:
In this article we study the existence of shock wave solutions for systems of partial differential equations of hydrodynamics with viscosity in one space dimension in the context of Colombeau's theory of generalized functions. This study uses the equality in the strict sense and the association of generalized functions (that is the weak equality). The shock wave solutions are given in terms of generalized functions that have the classical Heaviside step function as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function that have to satisfy part of the equations in the strict sense and part of the equations in the sense of association.
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this paper we discuss the nonlinear propagation of waves of short wavelength in dispersive systems. We propose a family of equations that is likely to describe the asymptotic behaviour of a large class of systems. We then restrict our attention to the analysis of the simplest nonlinear short-wave dynamics given by U-0 xi tau, = U-0 - 3(U-0)(2). We integrate numerically this equation for periodic and non-periodic boundary conditions, and we find that short waves may exist only if the amplitude of the initial profile is not too large.
Resumo:
In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrium thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how superstrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The collapse of trapped Boson-Einstein condensate (BEC) of atoms in states 1 and 2 was studied. When the interaction among the atoms in state i was attractive the component i of the condensate experienced collapse. When the interaction between an atom in state 1 and state 2 was attractive both components experienced collapse. The time-dependant Gross-Pitaevski (GP) equation was used to study the time evolution of the collapse. There was an alternate growth and decay in the number of particles experiencing collapse.
Resumo:
A quantizable worldsheet action is constructed for the superstring in a super-symmetric plane wave background with Ramond-Ramond flux. The action is manifestly invariant under all isometries of the background and is an exact worldsheet conformal field theory. © SISSA/ISAS 2002.