839 resultados para Cortical Fibroblasts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel expression in gingival fibroblasts is currently limited. The role of non-neuronal TRP channel expression is an area of much research interest particularly since TRP channel activation has recently been hypothesised to be associated with inflammation. Objectives: The present study was designed to determine the expression of TRPV1, TRPV2, TRPV3 and TRPV4 on human gingival fibroblasts. Methods: Human gingival fibroblasts were derived by explant culture from surgical tissue following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Cell lysates of gingival fibroblasts were electrophoresed and blotted on to nitrocellulose before probing with specific anti-TRP antibodies. Immunoreactive bands were detected using anti-species antibodies and chemiluminescent detection. Results: Gingival fibroblasts were shown to express proteins corresponding to the TRPV1, TRPV2, TRPV3 and TRPV4 channels as determined by western blotting. Conclusion: This study reports for the first time the expression of TRPV1, TRPV2, TRPV3 and TRPV4 by gingival fibroblasts. Knowledge of the expression of TRP channels by human gingival fibroblasts will guide future research on the roles of TRP channels in sensing the external environment in the oral cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inflammatory response to pulpal injury or infection has major clinical significance. Neurogenic inflammation describes the local release of neuropeptides, notably substance P (SP), from afferent neurones, and may play a role in the pathogenesis of pulpal disease. The fibroblast is the most numerous cell type in the dental pulp and recent work has suggested that it is involved in the inflammatory response. Objectives: The aims of the study were to determine whether pulp fibroblasts could produce SP, and to investigate the expression of the SP receptor, NK-1, by these cells. Methods: Primary pulp fibroblast cell populations were isolated by enzymatic digestion from non-carious teeth extracted for orthodontic reasons. Whole pulp tissue was obtained from freshly extracted sound (n=35) and carious (n=39) teeth. Expression of SP and NK-1 mRNA was determined by RT-PCR. The effects of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) on SP and NK-1 expression were also determined. The presence of NK-1 on fibroblast cell membranes was established by western blotting. The effects of the cytokines on each parameter were analysed by ANOVA. Radioimmunoassay (RIA) was carried out to quantify SP expression by pulp fibroblasts and in whole pulp tissue. Results: SP was expressed by pulpal fibroblasts both at the mRNA level and the protein level. In addition, NK-1 was detected in fibroblast cultures at the mRNA level and appeared as a double band on western blots of membrane extracts. IL-1β and TGF-β1 significantly stimulated the expression of SP and NK-1. SP levels were significantly greater (p<0.05) in carious compared to sound teeth. Conclusion: Pulp fibroblasts are capable of synthesising and secreting SP, as well as expressing the SP receptor, NK-1. These findings suggest that pulp fibroblasts play a role in neurogenic inflammation in pulpal disease. (Supported by the European Society of Endodontology.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Transient receptor potential (TRP) channels are widely, but not uniformly, distributed in tissues. To date the dominant focus of attention has been on TRP expression and functionality in neurons. However, their expression and activation in selected non-neuronal cells suggest TRPs have a potential role in coordinating cross-talk during the inflammatory process. Fibroblasts comprise the major cell type in the dental pulp and play an important role in pulpal inflammation. Objectives: The aim of this study was to investigate the expression and functionality of the TRP channels TRPA1, TRPM8, TRPV4 and TRPV1 in human dental pulp fibroblasts. Methods: Dental pulp fibroblasts were derived by explant culture of pulps removed from extracted healthy teeth. Fibroblasts were cultured in DMEM supplemented with 10% FCS, 100U/ml penicillin and 100µg/ml streptomycin. Protein expression of TRP channels was investigated by SDS- polyacrylamide gel electrophoresis and Western blotting of cell lysates from fibroblast cells in culture. TRPA1, TRPM8, TRPV4 and TRPV1 expression was determined by specific antibodies, detected using appropriate anti-species antibodies and chemiluminescence. Functionality of TRP channels was determined by Ca2+ microfluorimetry. Cells were grown on cover slips and incubated with Fura 2AM prior to stimulation with icilin (TRPA1 agonist), menthol (TRPM8 agonist), 4 alpha-phorbol 12,13-didecanoate (4alphaPDD) (TRPV4 agonist) or capsaicin (TRPV1 agonist). Emitted fluorescence (F340/F380) was used to determine intracellular [Ca2+] levels. Results: Fibroblast expression of TRPA1, TRPM8, TRPV4 and TRPV1 was confirmed at the protein level by Western blotting. Increased intracellular [Ca2+] levels in response to icillin, methanol, 4alphaPDD and capsacin, indicated functional expression of TRPA1, TRPM8, TRPV4 and TRPV respectively. Conclusions: The presence and functionality of TRP channels on dental pulp fibroblasts suggests a potential role for these cells in the pulpal neurogenic inflammatory response. (Supported by a research grant from the Royal College of Surgeons of Edinburgh).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The oral cavity is a frontline barrier which is often exposed to physical trauma and noxious substances, leading to pro-inflammatory responses designed to be protective in nature. The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel activation in gingival and periodontal inflammation is currently limited. Gingival fibroblasts are the most abundant structural cell in periodontal tissues and we hypothesised that they may have a role in the inflammatory response associated with TRP channel activation. Objectives: The present study was designed to determine whether the TRPV1 agonist capsaicin could elicit a pro-inflammatory response in gingival fibroblasts in vitro by up-regulation of interleukin-8 (IL-8) production. Methods: Gingival fibroblasts were derived by explant culture from surgical tissues following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Following treatment of gingival fibroblasts with capsaicin, IL-8 levels were measured by ELISA. The potential cytotoxicity of capsaicin was determined by the MTT assay. Results: In gingival fibroblasts treated with the TRPV1 agonist capsaicin (10µM), IL-8 production was significantly increased compared with untreated control cells. Capsaicin was shown not to be toxic to gingival fibroblasts at the concentrations studied. Conclusion: The identification of factors that modulate pro-inflammatory cytokine production is important for our understanding of gingival and periodontal inflammation. This study reports for the first time that gingival fibroblasts respond to the TRPV1 agonist capsaicin by increased production of IL-8. Activation of TRPV1 on gingival fibroblasts could therefore have an important role in initiating and sustaining the inflammatory response associated with periodontal diseases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the dental pulp angiogenesis is crucial for tooth development and a prerequisite for successful repair following injury and inflammation. The role of neuropeptides in pulpal inflammation has been well documented but their role in the regulation of angiogenesis in the dental pulp has not been elucidated. Objectives: The aim was to profile the expression of angiogenic growth factors produced by pulp fibroblasts and to study the effects of neuropeptides on their expression. Methods: Human pulp fibroblasts derived from healthy molar teeth were stimulated with neuropeptides previously identified in dental pulp, namely, Substance P (SP), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and calcitonin related gene peptide (CGRP) for 24 and 48 hrs. Simultaneous expression of ten growth factors was quantified using a novel human angiogenesis array (Ray Biotech, USA). Results: Pulp fibroblasts expressed human angiogenic growth factors, VEGF, bFGF, PDGF-BB, HGF, ANG2, HB-EGF, PIGF, angiogenin and leptin. Among the growth factors expressed VEGF, angiogenin and HGF were abundantly expressed compared to others. Neuropeptides induced variable effects on the expression of the angiogenic factors: CGRP potently up-regulated VEGF, bFGF, HGF and PIGF after 24 hr, while NPY tended to down regulate growth factors after 24 hr in culture but markedly up regulated ANG2, bFGF and leptin after 48 hr. SP down regulated expression of all angiogenic growth factors except for leptin, while VIP induced a small increase in expression of each growth factor, irrespective of time. Conclusion: Pulp fibroblasts express a range of angiogenic growth factors including angiogenin and leptin. Neuropeptides regulate the expression of these factors, suggesting an additional role for neuropeptides in the regulation of inflammation and healing in the dental pulp.
This work is supported by TC White Research Fund

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Receptor Activator of NF-kappaB ligand (RANKL), through binding to its receptor (RANK), plays an important role in osteoclast differentiation and activation. Conversely, osteoprotegerin (OPG), a decoy receptor for RANKL, inhibits osteoclastogenesis and subsequent bone turnover. Little is known about the role of resident periodontal ligament fibroblasts in regulating bone turnover. The aim of this study was to determine (i) if periodontal ligament fibroblasts produced OPG in vitro and (ii) the effects of IL-1b and TGF-b1 on OPG expression. Methods: Three human periodontal ligament fibroblast populations, developed by explant culture, were grown to confluence in 6-well plates in DMEM supplemented with 10% FCS. Cells were washed in HBSS and then cultured for an additional 48 hours in serum-free media supplemented with IL-1b or TGF-b1 at 10ng/ml. OPG expression levels in the conditioned medium were determined by ELISA (R&D Systems, UK) and confirmed by Western blot. Results: All three fibroblast strains produced quantifiable levels of OPG. Both IL-1b and, to a lesser extent, TGF-b1 significantly stimulated OPG expression in all fibroblast strains (p<0.05). Pre-incubation of samples with N-glycosidase F prior to Western blots indicated glycosylation of expressed OPG. Conclusions: These data indicate that periodontal ligament fibroblasts can regulate osteoclast activation via the RANK/RANKL signalling pathway. These fibroblasts may play an important role in regulating bone turnover both in periodontal disease and orthodontic tooth movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Unlike adult dermal wounds, the oral mucosa demonstrates preferential healing characterized by rapid remodeling and re-epithelialisation, with minimal scar formation. Secretory leukocyte protease inhibitor (SLPI) is an epithelial-derived factor with potential for promoting scarless repair. The aims of this study were to: (i) investigate the directed migratory (chemotaxis) response of oral and skin fibroblasts to various concentrations of SLPI; and (ii) compare migratory speed of the two cell types. Methods: Paired oral and skin fibroblasts were seeded at 2x104 cells in six well plates containing glass coverslips, and cultured in DMEM supplemented with 10% FCS for 48hours. Following a period of serum starvation (18hours in DMEM plus 0.5% BSA), coverslips were incorporated within a Dunn chemotaxis chamber containing DMEM with 0.5% BSA +/- SLPI gradients at 0.5, 1 or 2µM concentrations. Using microscopy, the migratory behaviour of cells was digitally captured every 10mins for 18hours, traced with JCell tracking software and resulting co-ordinates statistically analysed using Mathmatica software. Results: At all concentrations SLPI was a significant chemoattractant (p<0.01) for both cell types. However, skin fibroblasts migrated significantly faster than oral cells at each SLPI concentration, with greatest effect observed at the highest dose (skin: 32.0±0.47µm/hr, oral: 13.6±0.23µm/hr). Conclusion: SLPI is a chemoattractant for both oral and skin fibroblasts, and may play an important role in fibroblast recruitment during wound healing. This work was funded by the R&D Office, N.Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:

To quantify the risk for age-related cortical cataract and posterior subcapsular cataract (PSC) associated with having an affected sibling after adjusting for known environmental and personal risk factors.

DESIGN:

Sibling cohort study.

PARTICIPANTS:

Participants in the ongoing Salisbury Eye Evaluation (SEE) study (n = 321; mean age, 78.1+/-4.2 years) and their locally resident siblings (n = 453; mean age, 72.6+/-7.4 years) were recruited at the time of Rounds 3 and 4 of the SEE study. INTERVENTION/TESTING METHODS: Retroillumination photographs of the lens were graded for the presence of cortical cataract and PSC with the Wilmer grading system. The residual correlation between siblings' cataract grades was estimated after adjustment for a number of factors (age; gender; race; lifetime exposure to ultraviolet-B light; cigarette, alcohol, estrogen, and steroid use; serum antioxidants; history of diabetes; blood pressure; and body mass index) suspected to be associated with the presence of cataract.

RESULTS:

The average sibship size was 2.7 per family. Multivariate analysis revealed the magnitude of heritability (h(2)) for cortical cataract to be 24% (95% CI, 6%-42%), whereas that for PSC was not statistically significant (h(2) 4%; 95% CI, 0%-11%) after adjustment for the covariates. The model revealed that increasing age, female gender, a history of diabetes, and black race increased the odds of cortical cataract, whereas higher levels of provitamin A were protective. A history of diabetes and steroid use increased the odds for PSC.

CONCLUSIONS:

This study is consistent with a significant genetic effect for age-related cortical cataract but not PSC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models of visual perception are based on image representations in cortical area V1 and higher areas which contain many cell layers for feature extraction. Basic simple, complex and end-stopped cells provide input for line, edge and keypoint detection. In this paper we present an improved method for multi-scale line/edge detection based on simple and complex cells. We illustrate the line/edge representation for object reconstruction, and we present models for multi-scale face (object) segregation and recognition that can be embedded into feedforward dorsal and ventral data streams (the “what” and “where” subsystems) with feedback streams from higher areas for obtaining translation, rotation and scale invariance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extractions. Simple, complex and end-stopped cells tuned to different spatial frequencies (scales) and/or orientations provide input for line, edge and keypoint detection. This yields a rich, multi-scale object representation that can be stored in memory in order to identify objects. The multi-scale, keypoint-based saliency maps for Focus-of-Attention can be explored to obtain face detection and normalization, after which face recognition can be achieved using the line/edge representation. In this paper, we focus only on face normalization, showing that multi-scale keypoints can be used to construct canonical representations of faces in memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an improved scheme for line and edge detection in cortical area V1, based on responses of simple and complex cells, truly multi-scale with no free parameters. We illustrate the multi-scale representation for visual reconstruction, and show how object segregation can be achieved with coarse-to-finescale groupings. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only, and final categorization on coarse plus fine scales. Processing schemes are discussed in the framework of a complete cortical architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.