884 resultados para Contractive constraint
Resumo:
Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material`s strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the development of an engineering approach based upon a toughness scaling methodology incorporating the effects of weld strength mismatch on crack-tip driving forces. The approach adopts a nondimensional Weibull stress, (sigma) over bar (w), as a the near-tip driving force to correlate cleavage fracture across cracked weld configurations with different mismatch conditions even though the loading parameter (measured by J) may vary widely due to mismatch and constraint variations. Application of the procedure to predict the failure strain for an overmatch girth weld made of an API X80 pipeline steel demonstrates the effectiveness of the micromechanics approach. Overall, the results lend strong support to use a Weibull stress based procedure in defect assessments of structural welds.
Resumo:
Boron (B) deficiency is widespread in Brazilian citrus orchards and has been considered an important soil constraint to citrus yield. The aim of this work was to study B uptake and its mobility in young citrus trees, under different B statuses, in two rootstocks. The experiment was carried out in a greenhouse, with `Valencia` sweet orange trees budded on Rangpur lime or Swingle citrumelo. The plants were grown in pots containing nutrient solutions under either adequate or deficient B supply. Plants with different B levels were transplanted into solution with adequate level of B, enriched in 10 B in different stages of development ( vegetative growth and fruiting). About 20 to 35% of B content in the new parts of orange tree came from plant reserves. Boron mobility within the plant was influenced by its nutritional status; that is, the longer the period was that the plants were grown under deficient supply, the smaller was the mobility. Boron concentration in the sweet orange trees on Swingle was higher than that on Rangpur, suggesting higher demand of swingle Citrumelo for B.
Resumo:
Specific leaf area (SLA; m(leaf)(2) kg(leaf)(-1)) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain. Both individual tree-based models and other forest process-based models are generally highly sensitive to this parameter, but information on its temporal or within-stand variability is still scarce. In a 2-4-year-old Eucalyptus plantation in Congo, prone to seasonal drought, the within-stand and seasonal variability in SLA were investigated by means of destructive sampling carried out at 2-month intervals, over a 2-year period. Within-crown vertical gradients of SLA were small. Highly significant relationships were found between tree-average SLA (SLA(t)) and tree size (tree height, H(t), or diameter at breast height, DBH): SLA(t) ranged from about 9 m(2) kg(-1) for dominant trees to about 14-15 m(2) kg(-1) for the smallest trees. The decrease in SLA(t) with increasing tree size was accurately predicted from DBH using power functions. Stand-average SLA varied by about 20% during the year, with lowest values at the end of the 5-month dry season, and highest values about 2-3 months after the onset of the wet season. Variability in leaf water status according to tree size and season is discussed as a possible determinant of both the within-stand and seasonal variations in SM. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Gene duplication followed by acquisition of specific targeting information and dual targeting were evolutionary strategies enabling organelles to cope with overlapping functions. We examined the evolutionary trend of dual-targeted single-gene products in Arabidopsis and rice genomes. The number of paralogous proteins encoded by gene families and the dual-targeted orthologous proteins were analysed. The number of dual-targeted proteins and the corresponding gene-family sizes were similar in Arabidopsis and rice irrespective of genome sizes. We show that dual targeting of methionine aminopeptidase, monodehydroascorbate reductase, glutamyl-tRNA synthetase, and tyrosyl-tRNA synthetase was maintained despite occurrence of whole-genome duplications in Arabidopsis and rice as well as a polyploidization followed by a diploidization event (gene loss) in the latter.
Resumo:
Age is a critical determinant of an adult female mosquito's ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector longevity to disease transmission in different ecological contexts. It also limits our ability to evaluate novel disease control strategies that specifically target mosquito longevity. We report the development of a transcriptional profiling approach to determine age of adult female Aedes aegypti under field conditions. We demonstrate that this approach surpasses current cuticular hydrocarbon methods for both accuracy of predicted age as well as the upper limits at which age can be reliably predicted. The method is based on genes that display age-dependent expression in a range of dipteran insects and, as such, is likely to be broadly applicable to other disease vectors.
Resumo:
Reaching to interact with an object requires a compromise between the speed of the limb movement and the required end-point accuracy. The time it takes one hand to move to a target in a simple aiming task can be predicted reliably from Fitts' law, which states that movement time is a function of a combined measure of amplitude and accuracy constraints (the index of difficulty, ID). It has been assumed previously that Fitts' law is violated in bimanual aiming movements to targets of unequal ID. We present data from two experiments to show that this assumption is incorrect: if the attention demands of a bimanual aiming task are constant then the movements are well described by a Fitts' law relationship. Movement time therefore depends not only on ID but on other task conditions, which is a basic feature of Fitts' law. In a third experiment we show that eye movements are an important determinant of the attention demands in a bimanual aiming task. The results from the third experiment extend the findings of the first two experiments and show that bimanual aiming often relies on the strategic co-ordination of separate actions into a seamless behaviour. A number of the task specific strategies employed by the adult human nervous system were elucidated in the third experiment. The general strategic pattern observed in the hand trajectories was reflected by the pattern of eye movements recorded during the experiment. The results from all three experiments demonstrate that eye movements must be considered as an important constraint in bimanual aiming tasks.
Resumo:
The effects of temporal precision constraints and movement amplitude on performance of an interceptive aiming task were examined. Participants were required to strike a moving target object with a 'bat' by moving the bat along a straight path (constrained by a linear slide) perpendicular to the path of the target. Temporal precision constraints were defined in terms of the time period (or window) within which contact with the target was possible. Three time windows were used (approx. 35, 50 and 65 ms) and these were achieved either by manipulating the size of the bat (experiment 1a), the size of the target (experiment 1b) or the speed of the target (experiment 2). In all experiments, movement time (MT) increased in proportion to movement amplitude but was only affected by differences in the temporal precision constraint if this was achieved by variation in the target's speed. In this case the MT was approximately inversely proportional to target speed. Peak movement speed was affected by temporal accuracy constraints in all three experiments: participants reached higher speeds when the temporal precision required was greater. These results are discussed with reference to the speed-accuracy trade-off observed for temporally constrained aiming movements. It is suggested that the MT and speed of interceptive aiming movements may be understood as responses to the spatiotemporal constraints of the task.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYL107 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.
Resumo:
The purpose of this paper is to analyze the dynamics of national saving-investment relationship in order to determine the degree of capital mobility in 12 Latin American countries. The analytically relevant correlation is the short-term one, defined as that between changes in saving and investment. Of special interest is the speed at which variables return to the long run equilibrium relationship, which is interpreted as being negatively related to the degree of capital mobility. The long run correlation, in turn, captures the coefficient implied by the solvency constraint. We find that heterogeneity and cross-section dependence completely change the estimation of the long run coefficient. Besides we obtain a more precise short run coefficient estimate compared to the existent estimates in the literature. There is evidence of an intermediate degree of capital mobility, and the coefficients are extremely stable over time.
Resumo:
A graph clustering algorithm constructs groups of closely related parts and machines separately. After they are matched for the least intercell moves, a refining process runs on the initial cell formation to decrease the number of intercell moves. A simple modification of this main approach can deal with some practical constraints, such as the popular constraint of bounding the maximum number of machines in a cell. Our approach makes a big improvement in the computational time. More importantly, improvement is seen in the number of intercell moves when the computational results were compared with best known solutions from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Experiments were performed to determine whether the dormancy release effect of hydrated storage in darkness (dark-stratification) is common amongst annual ryegrass populations and has the potential to occur under field conditions. Dormant seeds from all populations tested (22) became sensitive to light during dark-stratification, enabling them to germinate when subsequently exposed to light. Under controlled temperature (25/15degreesC), light (12-h photoperiod), and hydration (solidified agar-water) conditions, more seeds germinated by 28 days if the first 14 days were in darkness followed by exposure to light for 12 h per day than if they were exposed to light throughout or darkness throughout. Constraint over the conditions imposed during dark-stratification and germination was gradually reduced to investigate whether the dormancy release effect was diminished. Dark-stratification was effective in promoting germination when performed under natural diurnal temperatures, and burial in moist soil provided suitable conditions for dark-stratification to occur. The surface of moist soil, with natural diurnal temperatures and sunlight, was suitable for germination of dark-stratified seeds. Dark-stratification is a quick and effective means to enhance the sensitivity of dormant annual ryegrass seeds to light, enabling the majority of the population to germinate. However, large quantities of light are required to promote germination of dark-stratified seeds, so buried seeds must be moved to the soil surface to allow exposure to adequate light for germination.
Resumo:
Understanding the role of multiple colour signals during sexual signalling is a central theme in animal communication. We quantified the role of multiple colour signals (including ultraviolet, UV), measures of body size and testosterone levels in settling disputes between male rivals in an elaborately ornamented, African lizard, played out in a large 'tournament' in the wild. The hue and brightness (total reflectance) of the UV throat in Augrabies flat lizards, Platysaurus broadleyi, as well as body size, were consistent and strong predictors of 'fighting ability'. Males with high fighting ability were larger and displayed a UV throat with low total reflectance. In contrast, males with low fighting ability were smaller and had violet throats with broader spectral reflectance curves (higher total reflectance). As fighting ability is associated with alternative reproductive tactics in this system (territorial versus floater), we also examined the role of colour signals in predicting male reproductive tactic. Territorial males had UV throats with higher chroma but had poorer body condition than floater males, probably because of the energetic costs of maintaining a territory. Although testosterone was not a significant predictor of fighting ability or reproductive tactic, it was correlated with the hue of the UV throat, suggesting that testosterone may impose some constraint on signal expression. Lastly, we show that within the context of the natural signalling environment, UV-reflective throats constitute a conspicuous, effective signal that male Augrabies flat lizards use to advertise their status honestly to rivals. (c) 2006 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Goal-directed, coordinated movements in humans emerge from a variety of constraints that range from 'high-level' cognitive strategies based oil perception of the task to 'low-level' neuromuscular-skeletal factors such as differential contributions to coordination from flexor and extensor muscles. There has been a tendency in the literature to dichotomize these sources of constraint, favouring one or the other rather than recognizing and understanding their mutual interplay. In this experiment, subjects were required to coordinate rhythmic flexion and extension movements with an auditory metronome, the rate of which was systematically increased. When subjects started in extension on the beat of the metronome, there was a small tendency to switch to flexion at higher rates, but not vice versa. When subjects: were asked to contact a physical stop, the location of which was either coincident with or counterphase to the auditor) stimulus, two effects occurred. When haptic contact was coincident with sound, coordination was stabilized for both flexion and extension. When haptic contact was counterphase to the metronome, coordination was actually destabilized, with transitions occurring from both extension to flexion on the beat and from flexion to extension on the beat. These results reveal the complementary nature of strategic and neuromuscular factors in sensorimotor coordination. They also suggest the presence of a multimodal neural integration process-which is parametrizable by rate and context - in which intentional movement, touch and sound are bound into a single, coherent unit.