962 resultados para Continuous glucose monitoring
Resumo:
The Iowa Department of Transportation research project HR-1013 is the evaluation of a prototype continuous monitoring nuclear density unit. The Unit, the Consolidation Monitoring Device (CMD), mounts on the rear of a slip-form paver and measures the density of the concrete while still in the plastic state. The evaluation performed determined the usefulness, accuracy, precision and reproducibility of the unit. The CMD was calibrated and tested in the laboratory for one week before field evaluation. The field evaluation consisted of monitoring at least 5 miles of paving and then correlating the CMD data with two conventional density methods. The two supplemental methods were density measurement with a Troxler nuclear gauge and densities obtained from core samples.
Resumo:
OBJECTIVES: We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by determining the association between outcome and the deviation of actual CPP from CPPopt. DESIGN: Retrospective analysis of prospectively collected data. SETTING: Neurosciences critical care unit of a university hospital. PATIENTS: A total of 327 traumatic head-injury patients admitted between 2003 and 2009 with continuous monitoring of arterial blood pressure and intracranial pressure. MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, intracranial pressure, and CPP were continuously recorded, and pressure reactivity index was calculated online. Outcome was assessed at 6 months. An automated curve fitting method was applied to determine CPP at the minimum value for pressure reactivity index (CPPopt). A time trend of CPPopt was created using a moving 4-hr window, updated every minute. Identification of CPPopt was, on average, feasible during 55% of the whole recording period. Patient outcome correlated with the continuously updated difference between median CPP and CPPopt (chi-square=45, p<.001; outcome dichotomized into fatal and nonfatal). Mortality was associated with relative "hypoperfusion" (CPP<CPPopt), severe disability with "hyperperfusion" (CPP>CPPopt), and favorable outcome was associated with smaller deviations of CPP from the individualized CPPopt. While deviations from global target CPP values of 60 mm Hg and 70 mm Hg were also related to outcome, these relationships were less robust. CONCLUSIONS: Real-time CPPopt could be identified during the recording time of majority of the patients. Patients with a median CPP close to CPPopt were more likely to have a favorable outcome than those in whom median CPP was widely different from CPPopt. Deviations from individualized CPPopt were more predictive of outcome than deviations from a common target CPP. CPP management to optimize cerebrovascular pressure reactivity should be the subject of future clinical trial in severe traumatic head-injury patients.
Resumo:
To investigate the time course of glucose metabolism in obesity 33 patients (21 to 69 years old; body mass index [BMI], 25.7 to 53.3 kg/m2) with different degrees of glucose intolerance or diabetes who had been studied initially and 6 years later were submitted to the same 100-g oral glucose tolerance test (OGTT) with indirect calorimetry. From a group of 13 obese subjects with normal glucose tolerance (NGT), four developed impaired glucose tolerance (IGT); from a group of nine patients with IGT, three developed non-insulin-dependent diabetes mellitus (NIDDM); five of six obese NIDDM subjects with high insulin response developed NIDDM with low insulin response. Five patients had diabetes with hypoinsulinemia initially. As previously seen in a cross-sectional study, the 3-hour glucose storage measured by continuous indirect calorimetry remained unaltered in patients with IGT, whereas it decreased in NIDDM patients. A further decrease in glucose storage was observed with the lowering of the insulin response in the previously hyperinsulinemic diabetics. These results confirm cross-sectional studies that suggest successive phases in the evolution of obesity to diabetes: A, NGT; B, IGT (the hyperglycemia normalizing the glucose storage over 3 hours); C, diabetes with increased insulin response, where hyperglycemia does not correct the resistance to glucose storage anymore; and D, diabetes with low insulin response, with a low glucose storage and an elevated fasting and postload glycemia.
Resumo:
ABSTRACT: BACKGROUND: A central question for ecologists is the extent to which anthropogenic disturbances (e.g. tourism) might impact wildlife and affect the systems under study. From a research perspective, identifying the effects of human disturbance caused by research-related activities is crucial in order to understand and account for potential biases and derive appropriate conclusions from the data. RESULTS: Here, we document a case of biological adjustment to chronic human disturbance in a colonial seabird, the king penguin (Aptenodytes patagonicus), breeding on remote and protected islands of the Southern ocean. Using heart rate (HR) as a measure of the stress response, we show that, in a colony with areas exposed to the continuous presence of humans (including scientists) for over 50 years, penguins have adjusted to human disturbance and habituated to certain, but not all, types of stressors. When compared to birds breeding in relatively undisturbed areas, birds in areas of high chronic human disturbance were found to exhibit attenuated HR responses to acute anthropogenic stressors of low-intensity (i.e. sounds or human approaches) to which they had been subjected intensely over the years. However, such attenuation was not apparent for high-intensity stressors (i.e. captures for scientific research) which only a few individuals experience each year. CONCLUSIONS: Habituation to anthropogenic sounds/approaches could be an adaptation to deal with chronic innocuous stressors, and beneficial from a research perspective. Alternately, whether penguins have actually habituated to anthropogenic disturbances over time or whether human presence has driven the directional selection of human-tolerant phenotypes, remains an open question with profound ecological and conservation implications, and emphasizes the need for more knowledge on the effects of human disturbance on long-term studied populations.
Resumo:
Glucose-induced thermogenesis (GIT) after a 100-g oral glucose load was measured by continuous indirect calorimetry in 32 nondiabetic and diabetic obese subjects and compared to 17 young and 13 middle aged control subjects. The obese subjects were divided into three groups: A (n = 12) normal glucose tolerance, B (n = 13) impaired glucose tolerance, and C (n = 7) diabetics, and were studied before and after a body weight loss ranging from 9.6 to 33.5 kg consecutive to a 4 to 6 months hypocaloric diet. GIT, measured over 3 h and expressed as percentage of the energy content of the load, was significantly reduced in obese groups A and C (6.2 +/- 0.6, and 3.8 +/- 0.7%, respectively) when compared to their age-matched control groups: 8.6 +/- 0.7 (young) and 5.8 +/- 0.3% (middle aged). Obese group B had a GIT of 6.1 +/- 0.6% which was lower than that of the young control group but not different from the middle-aged control group. After weight loss, GIT in the obese was further reduced in groups A and B than before weight loss: ie, 3.4 +/- 0.6 (p less than 0.001), 3.7 +/- 0.5 (p less than 0.01) respectively, whereas in group C, weight loss induced no further diminution in GIT (3.8 +/- 0.6%). These results support the concept of a thermogenic defect after glucose ingestion in obese individuals which is not the consequence of their excess body weight but may be one of the factors favoring the relapse of obesity after weight loss.
Resumo:
The thermogenic response to a 100-g oral glucose challenge was studied in 12 patients with Graves' disease using continuous indirect calorimetry. Seven hyperthyroid patients were reinvestigated under the same experimental conditions after medical therapy. The mean net increase in energy expenditure (delta EE) following the glucose challenge was the same in hyperthyroid patients as compared to a control group (delta EE = +0.15 +/- 0.02 and 0.15 +/- 0.01 kcal/min, respectively) and the treated patients (delta EE = +0.11 +/- 0.03 kcal/min ns). When expressed as a percentage of the energy content of the glucose challenge, the mean glucose induced thermogenesis was similar in all three groups: 7.0 +/- 1.0%, 7.4 +/- 0.5%, and 5.5 +/- 1.3% in hyperthyroid, control subjects, and treated patients, respectively. It is concluded that the high energy requirement of hyperthyroid patients is due primarily to an elevated resting energy expenditure. The postprandial thermogenesis in itself does not contribute to the elevated fuel utilization in Graves' disease.
Resumo:
Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were associated with 2-h glucose (β = 0.06-0.12 mmol/allele, P ≤ 1.53 × 10(-7)), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene-lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. The state of Iowa thus follows the national trend of an aging infrastructure in dire need of repair or replacement with a relatively limited funding base. Therefore, there is a need to develop new materials with properties that may lead to longer life spans and reduced life-cycle costs. In addition, new methods for determining the condition of structures are needed to monitor the structures effectively and identify when the useful life of the structure has expired or other maintenance is needed. High-performance steel (HPS) has emerged as a material with enhanced weldability, weathering capabilities, and fracture toughness compared to conventional structural steels. In 2004, the Iowa Department of Transportation opened Iowa's first HPS girder bridge, the East 12th Street Bridge over I-235 in Des Moines, Iowa. The objective of this project was to evaluate HPS as a viable option for use in Iowa bridges with a continuous structural health monitoring (SHM) system. The scope of the project included documenting the construction of the East 12th Street Bridge and concurrently developing a remote, continuous SHM system using fiber-optic sensing technology to evaluate the structural performance of the bridge. The SHM system included bridge evaluation parameters, similar to design parameters used by bridge engineers, for evaluating the structure. Through the successful completion of this project, a baseline of bridge performance was established that can be used for continued long-term monitoring of the structure. In general, the structural performance of the HPS bridge exceeded the design parameters and is performing well. Although some problems were encountered with the SHM system, the system functions well and recommendations for improving the system have been made.
Resumo:
PURPOSE OF REVIEW: An important goal of neurocritical care is the management of secondary brain injury (SBI), that is pathological events occurring after primary insult that add further burden to outcome. Brain oedema, cerebral ischemia, energy dysfunction, seizures and systemic insults are the main components of SBI. We here review recent data showing the clinical utility of brain multimodality monitoring (BMM) for the management of SBI. RECENT FINDINGS: Despite being recommended by international guidelines, standard intracranial pressure (ICP) monitoring may be insufficient to detect all episodes of SBI. ICP monitoring, combined with brain oxygen (PbtO(2)), cerebral microdialysis and regional cerebral blood flow, might help to target therapy (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Physiological parameters derived from BMM, including PbtO(2) and microdialysis lactate/pyruvate ratio, correlate with outcome and have recently been incorporated into neurocritical care guidelines. Advanced intracranial devices can be complemented by quantitative electroencephalography to monitor changes of brain function and nonconvulsive seizures. SUMMARY: BMM offers an on-line comprehensive scrutiny of the injured brain and is increasingly used for the management of SBI. Integration of monitored data using new informatics tools may help optimize therapy of brain-injured patients and quality of care.
Resumo:
The hydrogeological properties and responses of a productive aquifer in northeastern Switzerland are investigated. For this purpose, 3D crosshole electrical resistivity tomography (ERT) is used to define the main lithological structures within the aquifer (through static inversion) and to monitor the water infiltration from an adjacent river. During precipitation events and subsequent river flooding, the river water resistivity increases. As a consequence, the electrical characteristics of the infiltrating water can be used as a natural tracer to delineate preferential flow paths and flow velocities. The focus is primarily on the experiment installation, data collection strategy, and the structural characterization of the site and a brief overview of the ERT monitoring results. The monitoring system comprises 18 boreholes each equipped with 10 electrodes straddling the entire thickness of the gravel aquifer. A multi-channel resistivity system programmed to cycle through various four-point electrode configurations of the 180 electrodes in a rolling sequence allows for the measurement of approximately 15,500 apparent resistivity values every 7 h on a continuous basis. The 3D static ERT inversion of data acquired under stable hydrological conditions provides a base model for future time-lapse inversion studies and the means to investigate the resolving capability of our acquisition scheme. In particular, it enables definition of the main lithological structures within the aquifer. The final ERT static model delineates a relatively high-resistivity, low-porosity, intermediate-depth layer throughout the investigated aquifer volume that is consistent with results from well logging and seismic and radar tomography models. The next step will be to define and implement an appropriate time-lapse ERT inversion scheme using the river water as a natural tracer. The main challenge will be to separate the superposed time-varying effects of water table height, temperature, and salinity variations associated with the infiltrating water.
Resumo:
The thermogenic response induced by glucose/insulin administered intravenously was examined in 22 healthy male volunteers using indirect calorimetry in combination with the euglycaemic insulin clamp technique. Five increasing steady state levels of insulinaemia (62 muU/ml to 1132 muU/ml) were achieved by means of continuous infusions of insulin at 5 rates ranging from 0.5 mU/kg.min to 10 mU/kg.min. Euglycaemia was maintained at each insulin level by infusing glucose at different rates ranging from steady state values of 0.41 g/min to 0.77 g/min. These glucose/insulin infusions resulted in a significant net rise in resting energy expenditure from 0.33 kJ/min to 0.94 kJ/min over preinfusion baseline values for the lowest and the highest doses respectively. There was a highly significant relationship (r = 0.93, p<0.001, n = 42) between the amount of glucose infused and the net increase in energy expenditure over preinfusion baseline values. Intravenous glucose induced thermogenesis (GIT(iv)) was calculated as incremental values of energy expenditure related to step changes in glucose infusion rates. GIT(iv) was found to be approximately 5.5% a physiological plasma insulin levels (i.e. below 200 muU/ml) whereas at supraphysiological levels (i.e.>400 muU/ml) GIT(iv) was increased up to 8%. It was concluded that: 1. the magnitude of the GIT(iv) at physiological insulinaemia was similar to that found by other investigators who have administered glucose per os; 2. the elevated thermogenesis observed at high doses of glucose/insulin infusion is consistent with recent clinical findings showing a markedly increased energy expenditure in patients supported by large quantities of intravenous glucose (TPN).
Resumo:
Container Handling Equipment Monitoring System (CHEMS) is a system developed by Savcor One Oy. CHEMS measures important information for container ports performance and produces performance indicators. The aim of this thesis was to clarify performance measurement contents to Savcor and to develop, as an example, performance measures to Steveco Oy's container operations. The theoretical part of the thesis clarifies performance measurement and which of its components are important to container port. Performance measurement and measures are presented from the operational level's point of view, in which CHEMS is planned to aim. The theory of development process of performance measures is introduced at the end of the theoretical part. To make sure that performance measures are efficiently used, Steveco Oy's performance measures are developed in cooperation with the users. The measurement in operational level is continuous and the results must be reacted asquickly as possible. CHEMS is very suitable to continuous measurement and to produce real time-measures of container operations which are hard to get any otherway.
Resumo:
Careful patient monitoring using a variety of techniques including clinical and laboratory evaluation, bedside physiological monitoring with continuous or non-continuous techniques and imaging is fundamental to the care of patients who require neurocritical care. How best to perform and use bedside monitoring is still being elucidated. To create a basic platform for care and a foundation for further research the Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to develop recommendations about physiologic bedside monitoring. This supplement contains a Consensus Summary Statement with recommendations and individual topic reviews as a background to the recommendations. In this article, we highlight the recommendations and provide additional conclusions as an aid to the reader and to facilitate bedside care.
Resumo:
Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments.
Resumo:
Aims:This study was carried out to evaluate the feasibility of two different methods to determine free flap perfusion in cancer patients undergoing major reconstructive surgery. The hypotheses was that low perfusion in the flap is associated with flap complications. Patients and methods: Between August 2002 and June 2008 at the Department of Otorhinolaryngology – Head and Neck Surgery, Department of Surgery, and at the PET Centre, Turku, 30 consecutive patients with 32 free flaps were included in this study. The perfusion of the free microvascular flaps was assessed with positron emission tomography (PET) and radioactive water ([15O] H2O) in 40 radiowater injections in 33 PET studies. Furthermore, 24 free flaps were monitored with a continuous tissue oxygen measurement using flexible polarographic catheters for an average of three postoperative days. Results: Of the 17 patients operated on for head and neck (HN) cancer and reconstructed with 18 free flaps, three re-operations were carried out due to poor tissue oxygenation as indicated by ptiO2 monitoring results and three other patients were reoperated on for postoperative hematomas in the operated area. Blood perfusion assessed with PET (BFPET) was above 2.0 mL / min / 100 g in all flaps and a low flap-to-muscle BFPET ratio appeared to correlate with poor survival of the flap. Survival in this group of HN cancer patients was 9.0 months (median, range 2.4-34.2) after a median follow-up of 11.9 months (range 1.0-61.0 months). Seven HN patients of this group are alive without any sign of recurrence and one patient has died of other causes. All of the 13 breast reconstruction patients included in the study are alive and free of disease at a median follow-up time of 27.4 months (range 13.9-35.7 months). Re-explorations were carried out in three patients due data provided by ptiO2 monitoring and one re-exploration was avoided on the basis of adequate blood perfusion assessed with PET. Two patients had donorsite morbidity and 3 patients had partial flap necrosis or fat necrosis. There were no total flap losses. Conclusions: PtiO2 monitoring is a feasible method of free flap monitoring when flap temperature is monitored and maintained close to the core temperature. When other monitoring methods give controversial results or are unavailable, [15O] H2O PET technique is feasible in the evaluation of the perfusion of the newly reconstructed free flaps.