958 resultados para Contingency tables
Resumo:
Ken Thompson recently communicated some results mined from his set of 64 6-man endgame tables. These list some positions of interest, namely, mutual zugzwangs and those of maximum depth. The results have been analysed by the authors and found to be identical or compatible with the available or published findings of Karrer, Nalimov, Stiller and Wirth.
Resumo:
Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 10^9 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.
Resumo:
Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 109 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.
Resumo:
The associative sequence learning model proposes that the development of the mirror system depends on the same mechanisms of associative learning that mediate Pavlovian and instrumental conditioning. To test this model, two experiments used the reduction of automatic imitation through incompatible sensorimotor training to assess whether mirror system plasticity is sensitive to contingency (i.e., the extent to which activation of one representation predicts activation of another). In Experiment 1, residual automatic imitation was measured following incompatible training in which the action stimulus was a perfect predictor of the response (contingent) or not at all predictive of the response (noncontingent). A contingency effect was observed: There was less automatic imitation indicative of more learning in the contingent group. Experiment 2 replicated this contingency effect and showed that, as predicted by associative learning theory, it can be abolished by signaling trials in which the response occurs in the absence of an action stimulus. These findings support the view that mirror system development depends on associative learning and indicate that this learning is not purely Hebbian. If this is correct, associative learning theory could be used to explain, predict, and intervene in mirror system development.
Resumo:
Little attention has been focussed on a precise definition and evaluation mechanism for project management risk specifically related to contractors. When bidding, contractors traditionally price risks using unsystematic approaches. The high business failure rate our industry records may indicate that the current unsystematic mechanisms contractors use for building up contingencies may be inadequate. The reluctance of some contractors to include a price for risk in their tenders when bidding for work competitively may also not be a useful approach. Here, instead, we first define the meaning of contractor contingency, and then we develop a facile quantitative technique that contractors can use to estimate a price for project risk. This model will help contractors analyse their exposure to project risks; and help them express the risk in monetary terms for management action. When bidding for work, they can decide how to allocate contingencies strategically in a way that balances risk and reward.