991 resultados para Conductivity method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level set method has been implemented in a computational volcanology context. New techniques are presented to solve the advection equation and the reinitialisation equation. These techniques are based upon an algorithm developed in the finite difference context, but are modified to take advantage of the robustness of the finite element method. The resulting algorithm is tested on a well documented Rayleigh–Taylor instability benchmark [19], and on an axisymmetric problem where the analytical solution is known. Finally, the algorithm is applied to a basic study of lava dome growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A narrow absorption feature in an atomic or molecular gas (such as iodine or methane) is used as the frequency reference in many stabilized lasers. As part of the stabilization scheme an optical frequency dither is applied to the laser. In optical heterodyne experiments, this dither is transferred to the RF beat signal, reducing the spectral power density and hence the signal to noise ratio over that in the absence of dither. We removed the dither by mixing the raw beat signal with a dithered local oscillator signal. When the dither waveform is matched to that of the reference laser the output signal from the mixer is rendered dither free. Application of this method to a Winters iodine-stabilized helium-neon laser reduced the bandwidth of the beat signal from 6 MHz to 390 kHz, thereby lowering the detection threshold from 5 pW of laser power to 3 pW. In addition, a simple signal detection model is developed which predicts similar threshold reductions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clifford Geertz was best known for his pioneering excursions into symbolic or interpretive anthropology, especially in relation to Indonesia. Less well recognised are his stimulating explorations of the modern economic history of Indonesia. His thinking on the interplay of economics and culture was most fully and vigorously expounded in Agricultural Involution. That book deployed a succinctly packaged past in order to solve a pressing contemporary puzzle, Java's enduring rural poverty and apparent social immobility. Initially greeted with acclaim, later and ironically the book stimulated the deep and multi-layered research that in fact led to the eventual rejection of Geertz's central contentions. But the veracity or otherwise of Geertz's inventive characterisation of Indonesian economic development now seems irrelevant; what is profoundly important is the extraordinary stimulus he gave to a generation of scholars to explore Indonesia's modern economic history with a depth and intensity previously unimaginable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified formula for the integral transform of a nonlinear function is proposed for a class of nonlinear boundary value problems. The technique presented in this paper results in analytical solutions. Iterations and initial guess, which are needed in other techniques, are not required in this novel technique. The analytical solutions are found to agree surprisingly well with the numerically exact solutions for two examples of power law reaction and Langmuir-Hinshelwood reaction in a catalyst pellet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The artificial dissipation effects in some solutions obtained with a Navier-Stokes flow solver are demonstrated. The solvers were used to calculate the flow of an artificially dissipative fluid, which is a fluid having dissipative properties which arise entirely from the solution method itself. This was done by setting the viscosity and heat conduction coefficients in the Navier-Stokes solvers to zero everywhere inside the flow, while at the same time applying the usual no-slip and thermal conducting boundary conditions at solid boundaries. An artificially dissipative flow solution is found where the dissipation depends entirely on the solver itself. If the difference between the solutions obtained with the viscosity and thermal conductivity set to zero and their correct values is small, it is clear that the artificial dissipation is dominating and the solutions are unreliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling volcanic phenomena is complicated by free-surfaces often supporting large rheological gradients. Analytical solutions and analogue models provide explanations for fundamental characteristics of lava flows. But more sophisticated models are needed, incorporating improved physics and rheology to capture realistic events. To advance our understanding of the flow dynamics of highly viscous lava in Peléean lava dome formation, axi-symmetrical Finite Element Method (FEM) models of generic endogenous dome growth have been developed. We use a novel technique, the level-set method, which tracks a moving interface, leaving the mesh unaltered. The model equations are formulated in an Eulerian framework. In this paper we test the quality of this technique in our numerical scheme by considering existing analytical and experimental models of lava dome growth which assume a constant Newtonian viscosity. We then compare our model against analytical solutions for real lava domes extruded on Soufrière, St. Vincent, W.I. in 1979 and Mount St. Helens, USA in October 1980 using an effective viscosity. The level-set method is found to be computationally light and robust enough to model the free-surface of a growing lava dome. Also, by modeling the extruded lava with a constant pressure head this naturally results in a drop in extrusion rate with increasing dome height, which can explain lava dome growth observables more appropriately than when using a fixed extrusion rate. From the modeling point of view, the level-set method will ultimately provide an opportunity to capture more of the physics while benefiting from the numerical robustness of regular grids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the increasing prevalence of salinity world-wide, the measurement of exchangeable cation concentrations in saline soils remains problematic. Two soil types (Mollisol and Vertisol) were equilibrated with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths. The concentrations of exchangeable cations were then determined using several different types of methods, and the measured exchangeable cation concentrations compared to reference values. At low ionic strength (low salinity), the concentration of exchangeable cations can be accurately estimated from the total soil extractable cations. In saline soils, however, the presence of soluble salts in the soil solution precludes the use of this method. Leaching of the soil with a pre-wash solution (such as alcohol) was found to effectively remove the soluble salts from the soil, thus allowing the accurate measurement of the effective cation exchange capacity (ECEC). However, the dilution associated with this pre-washing increased the exchangeable Ca concentrations while simultaneously decreasing exchangeable Na. In contrast, when calculated as the difference between the total extractable cations and the soil solution cations, good correlations were found between the calculated exchangeable cation concentrations and the reference values for both Na (Mollisol: y=0.873x and Vertisol: y=0.960x) and Ca (Mollisol: y=0.901x and Vertisol: y=1.05x). Therefore, for soils with a soil solution ionic strength greater than 50 mM (electrical conductivity of 4 dS/m) (in which exchangeable cation concentrations are overestimated by the assumption they can be estimated as the total extractable cations), concentrations can be calculated as the difference between total extractable cations and soluble cations.