925 resultados para Concertos (Harpsichord ensemble with string orchestra)
Resumo:
The Landau damping of sound wave in a plasma consisting of an ensemble of magnetic flux tubes with reference to the work by Ryutov and Ryutova (1976) is discussed. Sound waves cannot be Landau damped in general but under certain restriction conditions on plasma parameters the possibility of absorption of these waves can exist.
Resumo:
Isothermal-isobaric ensemble Monte Carlo simulation studies of adamantane have been carried out at different temperatures. Thermodynamic properties and radial distribution functions calculated by employing a simple potential model based on sitesite interactions show good agreement with experiment and suggest that the solid is orientationally disordered at high temperatures.
Resumo:
A new mode of driven nonlinear vibrations of a stretched string is investigated with reference to conditions of existence, properties, and regions of stability. It is shown that this mode exhibits negative resistance properties at all frequencies and driving force amplitudes. Discovery of this mode helps to fill certain gaps in the theory of forced nonlinear vibrations of strings.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Performance studies on mechanical + adsorption hybrid compression refrigeration cycles with HFC 134a
Resumo:
This paper presents the results of an investigation on the efficacy of hybrid compression process for refrigerant HFC 134a in cooling applications. The conventional mechanical compression is supplemented by thermal compression using a string of adsorption compressors. Activated carbon is the adsorbent for the thermal compression segment. The alternatives of bottoming either mechanical or thermal compression stages are investigated. It is shown that almost 40% energy saving is realizable by carrying out a part of the compression in a thermal compressor compared to the case when the entire compression is carried out in a single-stage mechanical compressor. The hybrid compression is feasible even when low grade heat is available. Some performance indictors are defined and evaluated for various configurations.
Resumo:
A new rotating beam finite element is developed in which the basis functions are obtained by the exact solution of the governing static homogenous differential equation of a stiff string, which results from an approximation in the rotating beam equation. These shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. Using this new element and the Hermite cubic finite element, a convergence study of natural frequencies is performed, and it is found that the new element converges much more rapidly than the conventional Hermite cubic element for the first two modes at higher rotation speeds. The new element is also applied for uniform and tapered rotating beams to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
In this thesis we examine multi-field inflationary models of the early Universe. Since non-Gaussianities may allow for the possibility to discriminate between models of inflation, we compute deviations from a Gaussian spectrum of primordial perturbations by extending the delta-N formalism. We use N-flation as a concrete model; our findings show that these models are generically indistinguishable as long as the slow roll approximation is still valid. Besides computing non-Guassinities, we also investigate Preheating after multi-field inflation. Within the framework of N-flation, we find that preheating via parametric resonance is suppressed, an indication that it is the old theory of preheating that is applicable. In addition to studying non-Gaussianities and preheatng in multi-field inflationary models, we study magnetogenesis in the early universe. To this aim, we propose a mechanism to generate primordial magnetic fields via rotating cosmic string loops. Magnetic fields in the micro-Gauss range have been observed in galaxies and clusters, but their origin has remained elusive. We consider a network of strings and find that rotating cosmic string loops, which are continuously produced in such networks, are viable candidates for magnetogenesis with relevant strength and length scales, provided we use a high string tension and an efficient dynamo.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper disentangles how organization members' “passion orchestra” is related to their entrepreneurial intentions in the particularly relevant context of academia. Drawing on passion literature and identity theory, we propose and test a model linking two central parts of researchers' “passion orchestra”, namely entrepreneurial and obsessive scientific passion, directly and indirectly, to spin-off and start-up intentions. While spin-off intentions refer to intentions to found a firm based upon research results, start-up intentions denote intentions to start any type of company. Using a sample of 2308 researchers from 24 European universities, our findings reveal that higher levels of entrepreneurial passion are associated with both stronger spin-off and start-up intentions. Further, obsessive scientific passion is positively associated with researchers' intentions to create a spin-off, and negatively with their propensity to establish a start-up. Entrepreneurial self-efficacy and affective organizational commitment mediate these effects. Finally, the two types of passion show characteristic interactions. Obsessive scientific passion moderates the entrepreneurial passion–intentions relationship such that it strengthens spin-off intentions. Our results highlight that recasting the individual driven by a singular passion to one with a “passion orchestra” provides a more holistic understanding of the new venture creation process. Implications for research and practice are discussed.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time,recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through a pseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets of measurements involving various load cases, we expedite the speed of thePD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time, recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through apseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets ofmeasurements involving various load cases, we expedite the speed of the PD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.
Resumo:
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Landau damping of sound waves in a plasma consisting of ensemble of magnetic flux tubes is discussed. It is shown that sound waves cannot be Landau damped in general but under certain restricted conditions on plasma parameters the possibility of absorption of these waves can exist. The possibility of radiative damping of the acoustic waves along the magnetic filaments is also discussed. It appears that the most plausible mechanism of damping of sound waves in a plasma consisting of magnetic filaments can be due to scattering of a sound wave by the filaments.
Resumo:
This paper presents laboratory investigations on the visible corona and discharge radio noise. Experimental investigations are carried on various types of normal and anti-fog types of ceramic disc insulator at the recently established artificial pollution experimental facility. The results obtained from the experimental investigations show better performance for the disc insulators fitted with field reduction electrodes. In addition to the corona and radio noise investigations the comparisons are also made for the experimental results of the potential distribution across the insulator string (with and without filed reduction electrode) with the simulation results obtained by using Surface Charge Simulation Method.