959 resultados para Computer software maintenance
Resumo:
There is growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. However, context-awareness introduces various software engineering challenges, as well as privacy and usability concerns. In this paper, we present a conceptual framework and software infrastructure that together address known software engineering challenges, and enable further practical exploration of social and usability issues by facilitating the prototyping and fine-tuning of context-aware applications.
Resumo:
A major challenge in teaching software engineering to undergraduates is that most students have limited industry experience, so the problems addressed are unknown and hence unappreciated. Issues of scope prevent a realistic software engineering experience, and students often graduate with a simplistic view of software engineering’s challenges. Problems and Programmers (PnP) is a competitive, physical card game that simulates the software engineering process from requirements specification to product delivery. Deliverables are abstracted, allowing a focus on process issues and for lessons to be learned in a relatively short time. The rules are easy to understand and the game’s physical nature allows for face-to-face interaction between players. The game’s developers have described PnP in previous publications, but this paper reports the game’s use within a larger educational scheme. Students learn and play PnP, and then are required to create a software requirements specification based on the game. Finally, students reflect on the game’s strengths and weaknesses and their experiences in an individual essay. The paper discusses this approach, students’ experiences and overall outcomes, and offers an independent, critical look at the game, its use, and potential improvements.
Resumo:
Experiments with simulators allow psychologists to better understand the causes of human errors and build models of cognitive processes to be used in human reliability assessment (HRA). This paper investigates an approach to task failure analysis based on patterns of behaviour, by contrast to more traditional event-based approaches. It considers, as a case study, a formal model of an air traffic control (ATC) system which incorporates controller behaviour. The cognitive model is formalised in the CSP process algebra. Patterns of behaviour are expressed as temporal logic properties. Then a model-checking technique is used to verify whether the decomposition of the operator's behaviour into patterns is sound and complete with respect to the cognitive model. The decomposition is shown to be incomplete and a new behavioural pattern is identified, which appears to have been overlooked in the analysis of the data provided by the experiments with the simulator. This illustrates how formal analysis of operator models can yield fresh insights into how failures may arise in interactive systems.
Resumo:
Model transformations are an integral part of model-driven development. Incremental updates are a key execution scenario for transformations in model-based systems, and are especially important for the evolution of such systems. This paper presents a strategy for the incremental maintenance of declarative, rule-based transformation executions. The strategy involves recording dependencies of the transformation execution on information from source models and from the transformation definition. Changes to the source models or the transformation itself can then be directly mapped to their effects on transformation execution, allowing changes to target models to be computed efficiently. This particular approach has many benefits. It supports changes to both source models and transformation definitions, it can be applied to incomplete transformation executions, and a priori knowledge of volatility can be used to further increase the efficiency of change propagation.
Resumo:
This paper describes a formal component language, used to support automated component-based program development. The components, referred to as templates, are machine processable, meaning that appropriate tool support, such as retrieval support, can be developed. The templates are highly adaptable, meaning that they can be applied to a wide range of problems. Some of the main features of the language are described, including: higher-order parameters; state variable declarations; specification statements and conditionals; applicability conditions and theories; meta-level place holders; and abstract data structures.