896 resultados para Computer aided analysis, Machine vision, Video surveillance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have shown that people with disabilities benefit substantially from access to a means of independent mobility and assistive technology. Researchers are using technology originally developed for mobile robots to create easier to use wheelchairs. With this kind of technology people with disabilities can gain a degree of independence in performing daily life activities. In this work a computer vision system is presented, able to drive a wheelchair with a minimum number of finger commands. The user hand is detected and segmented with the use of a kinect camera, and fingertips are extracted from depth information, and used as wheelchair commands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new quantitative approach of the mandibular sexual dimorphism, based on computer-aided image analysis and elliptical Fourier analysis of the mandibular outline in lateral view is presented. This method was applied to a series of 117 dentulous mandibles from 69 male and 48 female individuals native of Rhenish countries. Statistical discriminant analysis of the elliptical Fourier harmonics allowed the demonstration of a significant sexual dimorphism in 97.1% of males and 91.7% of females, i.e. in a higher proportion than in previous studies using classical metrical approaches. This original method opens interesting perspectives for increasing the accuracy of sex identification in current anthropological practice and in forensic procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laajojen pintojen kuvaaminen rajoitetussa työskentelytilassa riittävällä kuvatarkkuudella voi olla vaikeaa. Kuvaaminen on suoritettava osissa ja osat koottava saumattomaksi kokonaisnäkymäksi eli mosaiikkikuvaksi. Kuvauslaitetta käsin siirtelevän käyttäjän on saatava välitöntä palautetta, jotta mosaiikkiin ei jäisi aukkoja ja työ olisi nopeaa. Työn tarkoituksena oli rakentaa pieni, kannettava ja tarkka kuvauslaite paperi- ja painoteollisuuden tarpeisiin sekä kehittää palautteen antamiseen menetelmä, joka koostaaja esittää karkeaa mosaiikkikuvaa tosiajassa. Työssä rakennettiin kaksi kuvauslaitetta: ensimmäinen kuluttajille ja toinen teollisuuteen tarkoitetuista osista. Kuvamateriaali käsiteltiin tavallisella pöytätietokoneella. Videokuvien välinen liike laskettiin yksinkertaisella seurantamenetelmällä ja mosaiikkikuvaa koottiin kameroiden kuvanopeudella. Laskennallista valaistuksenkorjausta tutkittiin ja kehitetty menetelmä otettiin käyttöön. Ensimmäisessä kuvauslaitteessa on ongelmia valaistuksen ja linssivääristymien kanssa tuottaen huonolaatuisia mosaiikkikuvia. Toisessa kuvauslaitteessa nämä ongelmat on korjattu. Seurantamenetelmä toimii hyvin ottaen huomioon sen yksinkertaisuuden ja siihen ehdotetaan monia parannuksia. Työn tulokset osoittavat, että tosiaikainen mosaiikkikuvan koostaminen megapikselin kuvamateriaalista on mahdollista kuluttajille tarkoitetulla tietokonelaitteistolla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaikka keraamisten laattojen valmistusprosessi onkin täysin automatisoitu, viimeinen vaihe eli laaduntarkistus ja luokittelu tehdään yleensä ihmisvoimin. Automaattinen laaduntarkastus laattojen valmistuksessa voidaan perustella taloudellisuus- ja turvallisuusnäkökohtien avulla. Tämän työn tarkoituksena on kuvata tutkimusprojektia keraamisten laattojen luokittelusta erilaisten väripiirteiden avulla. Oleellisena osana tutkittiin RGB- ja spektrikuvien välistä eroa. Työn teoreettinen osuus käy läpi aiemmin aiheesta tehdyn tutkimuksen sekä antaa taustatietoa konenäöstä, hahmontunnistuksesta, luokittelijoista sekä väriteoriasta. Käytännön osan aineistona oli 25 keraamista laattaa, jotka olivat viidestä eri luokasta. Luokittelussa käytettiin apuna k:n lähimmän naapurin (k-NN) luokittelijaa sekä itseorganisoituvaa karttaa (SOM). Saatuja tuloksia verrattiin myös ihmisten tekemään luokitteluun. Neuraalilaskenta huomattiin tärkeäksi työkaluksi spektrianalyysissä. SOM:n ja spektraalisten piirteiden avulla saadut tulokset olivat lupaavia ja ainoastaan kromatisoidut RGB-piirteet olivat luokittelussa parempia kuin nämä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents an automatic, computer-aided analytical method called Comparison Structure Analysis (CSA), which can be applied to different dimensions of music. The aim of CSA is first and foremost practical: to produce dynamic and understandable representations of musical properties by evaluating the prevalence of a chosen musical data structure through a musical piece. Such a comparison structure may refer to a mathematical vector, a set, a matrix or another type of data structure and even a combination of data structures. CSA depends on an abstract systematic segmentation that allows for a statistical or mathematical survey of the data. To choose a comparison structure is to tune the apparatus to be sensitive to an exclusive set of musical properties. CSA settles somewhere between traditional music analysis and computer aided music information retrieval (MIR). Theoretically defined musical entities, such as pitch-class sets, set-classes and particular rhythm patterns are detected in compositions using pattern extraction and pattern comparison algorithms that are typical within the field of MIR. In principle, the idea of comparison structure analysis can be applied to any time-series type data and, in the music analytical context, to polyphonic as well as homophonic music. Tonal trends, set-class similarities, invertible counterpoints, voice-leading similarities, short-term modulations, rhythmic similarities and multiparametric changes in musical texture were studied. Since CSA allows for a highly accurate classification of compositions, its methods may be applicable to symbolic music information retrieval as well. The strength of CSA relies especially on the possibility to make comparisons between the observations concerning different musical parameters and to combine it with statistical and perhaps other music analytical methods. The results of CSA are dependent on the competence of the similarity measure. New similarity measures for tonal stability, rhythmic and set-class similarity measurements were proposed. The most advanced results were attained by employing the automated function generation – comparable with the so-called genetic programming – to search for an optimal model for set-class similarity measurements. However, the results of CSA seem to agree strongly, independent of the type of similarity function employed in the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Print quality and the printability of paper are very important attributes when modern printing applications are considered. In prints containing images, high print quality is a basic requirement. Tone unevenness and non uniform glossiness of printed products are the most disturbing factors influencing overall print quality. These defects are caused by non ideal interactions of paper, ink and printing devices in high speed printing processes. Since print quality is a perceptive characteristic, the measurement of unevenness according to human vision is a significant problem. In this thesis, the mottling phenomenon is studied. Mottling is a printing defect characterized by a spotty, non uniform appearance in solid printed areas. Print mottle is usually the result of uneven ink lay down or non uniform ink absorption across the paper surface, especially visible in mid tone imagery or areas of uniform color, such as solids and continuous tone screen builds. By using existing knowledge on visual perception and known methods to quantify print tone variation, a new method for print unevenness evaluation is introduced. The method is compared to previous results in the field and is supported by psychometric experiments. Pilot studies are made to estimate the effect of optical paper characteristics prior to printing, on the unevenness of the printed area after printing. Instrumental methods for print unevenness evaluation have been compared and the results of the comparison indicate that the proposed method produces better results in terms of visual evaluation correspondence. The method has been successfully implemented as ail industrial application and is proved to be a reliable substitute to visual expertise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monimutkaisissa ja muuttuvissa ympäristöissä työskentelevät robotit tarvitsevat kykyä manipuloida ja tarttua esineisiin. Tämä työ tutkii robottitarttumisen ja robottitartuntapis-teiden koneoppimisen aiempaa tutkimusta ja nykytilaa. Nykyaikaiset menetelmät käydään läpi, ja Le:n koneoppimiseen pohjautuva luokitin toteutetaan, koska se tarjoaa parhaan onnistumisprosentin tutkituista menetelmistä ja on muokattavissa sopivaksi käytettävissä olevalle robotille. Toteutettu menetelmä käyttää intensititeettikuvaan ja syvyyskuvaan po-hjautuvia ominaisuuksi luokitellakseen potentiaaliset tartuntapisteet. Tämän toteutuksen tulokset esitellään.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.