873 resultados para Computer Security, Access Control, Distributed Computing, Object Oriented Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this session we look at how to think systematically about a problem and create a solution. We look at the definition and characteristics of an algorithm, and see how through modularisation and decomposition we can then choose a set of methods to create. We also compare this somewhat procedural approach, with the way that design works in Object Oriented Systems,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to design a control law for continuous systems with Boolean inputs allowing the output to track a desired trajectory. Such systems are controlled by items of commutation. This type of systems, with Boolean inputs, has found increasing use in the electric industry. Power supplies include such systems and a power converter represents one of theses systems. For instance, in power electronics the control variable is the switching OFF and ON of components such as thyristors or transistors. In this paper, a method is proposed for the designing of a control law in state space for such systems. This approach is implemented in simulation for the control of an electronic circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a preliminary methodology for agent-oriented software engineering based on the idea of agent interaction analysis. This approach uses interactions between undetermined agents as the primary component of analysis and design. Agents as a basis for software engineering are useful because they provide a powerful and intuitive abstraction which can increase the comprehensiblity of a complex design. The paper describes a process by which the designer can derive the interactions that can occur in a system satisfying the given requirements and use them to design the structure of an agent-based system, including the identification of the agents themselves. We suggest that this approach has the flexibility necessary to provide agent-oriented designs for open and complex applications, and has value for future maintenance and extension of these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cluster environments have an enormous potential processing power, real applications that take advantage of this power remain an elusive goal. This is due, in part, to the lack of understanding about the characteristics of the applications best suited for these environments. This paper focuses on Master/Slave applications for large heterogeneous clusters. It defines application, cluster and execution models to derive an analytic expression for the execution time. It defines speedup and derives speedup bounds based on the inherent parallelism of the application and the aggregated computing power of the cluster. The paper derives an analytical expression for efficiency and uses it to define scalability of the algorithm-cluster combination based on the isoefficiency metric. Furthermore, the paper establishes necessary and sufficient conditions for an algorithm-cluster combination to be scalable which are easy to verify and use in practice. Finally, it covers the impact of network contention as the number of processors grow. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of establishing a state estimator for switched affine systems. For that matter, a modification on the Luenberger observer is proposed, the switched Luenberger observer, whose idea is to design one output gain matrix for each mode of the original system. The efficiency of the proposed method relies on a simplification on estimation error which is proved always valid, guaranteeing the estimation error to asymptotically converge to zero, for any initial state and switching law. Next, a dynamic output-dependent switching law is formulated. Then, design methodologies using linear matrix inequalities are proposed, which, to the authors's knowledge, have not yet been applied to this problem. Finally, observers for DC-DC converters are designed and simulated as application examples. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, sufficient conditions for the existence of switching laws for stabilizing switched TS fuzzy systems via a fuzzy Lyapunov function are proposed. The conditions are found by exploring properties of the membership functions and are formulated in terms of linear matrix inequalities (LMIs). Stabilizing switching conditions with bounds on the decay rate solution and H1 performance are also obtained. Numerical examples illustrate the effectiveness of the proposed design methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shift workers from control centers of electrical systems are a group that has received little attention in Brazil. This study aimed to compare workers' job satisfaction at five control centers of a Brazilian company electrical system, and according to their job titles. Method: The Organization Satisfaction Index (OSI) questionnaire to assess job satisfaction was used. ANOVA was used to compare OSI means, according to job title and control center. The results showed that there is no difference in job satisfaction among job titles, but a significant difference was found according to the control center. A single organizational culture cannot be applied to several branches. It is required to implement actions that would result in job satisfaction improvements among workers of all studied control rooms centers. The high level of education of operators working in all centers might have contributed to the similar values of perceived satisfaction among distinct job titles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises under two criteria. The first one is an unconstrained mean-variance trade-off performance criterion along the time, and the second one is a minimum variance criterion along the time with constraints on the expected output. We present explicit conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. We conclude the paper by presenting a numerical example of a multi-period portfolio selection problem with regime switching in which it is desired to minimize the sum of the variances of the portfolio along the time under the restriction of keeping the expected value of the portfolio greater than some minimum values specified by the investor. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed real-time embedded systems are becoming increasingly important to society. More demands will be made on them and greater reliance will be placed on the delivery of their services. A relevant subset of them is high-integrity or hard real-time systems, where failure can cause loss of life, environmental harm, or significant financial loss. Additionally, the evolution of communication networks and paradigms as well as the necessity of demanding processing power and fault tolerance, motivated the interconnection between electronic devices; many of the communications have the possibility of transferring data at a high speed. The concept of distributed systems emerged as systems where different parts are executed on several nodes that interact with each other via a communication network. Java’s popularity, facilities and platform independence have made it an interesting language for the real-time and embedded community. This was the motivation for the development of RTSJ (Real-Time Specification for Java), which is a language extension intended to allow the development of real-time systems. The use of Java in the development of high-integrity systems requires strict development and testing techniques. However, RTJS includes a number of language features that are forbidden in such systems. In the context of the HIJA project, the HRTJ (Hard Real-Time Java) profile was developed to define a robust subset of the language that is amenable to static analysis for high-integrity system certification. Currently, a specification under the Java community process (JSR- 302) is being developed. Its purpose is to define those capabilities needed to create safety critical applications with Java technology called Safety Critical Java (SCJ). However, neither RTSJ nor its profiles provide facilities to develop distributed realtime applications. This is an important issue, as most of the current and future systems will be distributed. The Distributed RTSJ (DRTSJ) Expert Group was created under the Java community process (JSR-50) in order to define appropriate abstractions to overcome this problem. Currently there is no formal specification. The aim of this thesis is to develop a communication middleware that is suitable for the development of distributed hard real-time systems in Java, based on the integration between the RMI (Remote Method Invocation) model and the HRTJ profile. It has been designed and implemented keeping in mind the main requirements such as the predictability and reliability in the timing behavior and the resource usage. iThe design starts with the definition of a computational model which identifies among other things: the communication model, most appropriate underlying network protocols, the analysis model, and a subset of Java for hard real-time systems. In the design, the remote references are the basic means for building distributed applications which are associated with all non-functional parameters and resources needed to implement synchronous or asynchronous remote invocations with real-time attributes. The proposed middleware separates the resource allocation from the execution itself by defining two phases and a specific threading mechanism that guarantees a suitable timing behavior. It also includes mechanisms to monitor the functional and the timing behavior. It provides independence from network protocol defining a network interface and modules. The JRMP protocol was modified to include two phases, non-functional parameters, and message size optimizations. Although serialization is one of the fundamental operations to ensure proper data transmission, current implementations are not suitable for hard real-time systems and there are no alternatives. This thesis proposes a predictable serialization that introduces a new compiler to generate optimized code according to the computational model. The proposed solution has the advantage of allowing us to schedule the communications and to adjust the memory usage at compilation time. In order to validate the design and the implementation a demanding validation process was carried out with emphasis in the functional behavior, the memory usage, the processor usage (the end-to-end response time and the response time in each functional block) and the network usage (real consumption according to the calculated consumption). The results obtained in an industrial application developed by Thales Avionics (a Flight Management System) and in exhaustive tests show that the design and the prototype are reliable for industrial applications with strict timing requirements. Los sistemas empotrados y distribuidos de tiempo real son cada vez más importantes para la sociedad. Su demanda aumenta y cada vez más dependemos de los servicios que proporcionan. Los sistemas de alta integridad constituyen un subconjunto de gran importancia. Se caracterizan por que un fallo en su funcionamiento puede causar pérdida de vidas humanas, daños en el medio ambiente o cuantiosas pérdidas económicas. La necesidad de satisfacer requisitos temporales estrictos, hace más complejo su desarrollo. Mientras que los sistemas empotrados se sigan expandiendo en nuestra sociedad, es necesario garantizar un coste de desarrollo ajustado mediante el uso técnicas adecuadas en su diseño, mantenimiento y certificación. En concreto, se requiere una tecnología flexible e independiente del hardware. La evolución de las redes y paradigmas de comunicación, así como la necesidad de mayor potencia de cómputo y de tolerancia a fallos, ha motivado la interconexión de dispositivos electrónicos. Los mecanismos de comunicación permiten la transferencia de datos con alta velocidad de transmisión. En este contexto, el concepto de sistema distribuido ha emergido como sistemas donde sus componentes se ejecutan en varios nodos en paralelo y que interactúan entre ellos mediante redes de comunicaciones. Un concepto interesante son los sistemas de tiempo real neutrales respecto a la plataforma de ejecución. Se caracterizan por la falta de conocimiento de esta plataforma durante su diseño. Esta propiedad es relevante, por que conviene que se ejecuten en la mayor variedad de arquitecturas, tienen una vida media mayor de diez anos y el lugar ˜ donde se ejecutan puede variar. El lenguaje de programación Java es una buena base para el desarrollo de este tipo de sistemas. Por este motivo se ha creado RTSJ (Real-Time Specification for Java), que es una extensión del lenguaje para permitir el desarrollo de sistemas de tiempo real. Sin embargo, RTSJ no proporciona facilidades para el desarrollo de aplicaciones distribuidas de tiempo real. Es una limitación importante dado que la mayoría de los actuales y futuros sistemas serán distribuidos. El grupo DRTSJ (DistributedRTSJ) fue creado bajo el proceso de la comunidad de Java (JSR-50) con el fin de definir las abstracciones que aborden dicha limitación, pero en la actualidad aun no existe una especificacion formal. El objetivo de esta tesis es desarrollar un middleware de comunicaciones para el desarrollo de sistemas distribuidos de tiempo real en Java, basado en la integración entre el modelo de RMI (Remote Method Invocation) y el perfil HRTJ. Ha sido diseñado e implementado teniendo en cuenta los requisitos principales, como la predecibilidad y la confiabilidad del comportamiento temporal y el uso de recursos. El diseño parte de la definición de un modelo computacional el cual identifica entre otras cosas: el modelo de comunicaciones, los protocolos de red subyacentes más adecuados, el modelo de análisis, y un subconjunto de Java para sistemas de tiempo real crítico. En el diseño, las referencias remotas son el medio básico para construcción de aplicaciones distribuidas las cuales son asociadas a todos los parámetros no funcionales y los recursos necesarios para la ejecución de invocaciones remotas síncronas o asíncronas con atributos de tiempo real. El middleware propuesto separa la asignación de recursos de la propia ejecución definiendo dos fases y un mecanismo de hebras especifico que garantiza un comportamiento temporal adecuado. Además se ha incluido mecanismos para supervisar el comportamiento funcional y temporal. Se ha buscado independencia del protocolo de red definiendo una interfaz de red y módulos específicos. También se ha modificado el protocolo JRMP para incluir diferentes fases, parámetros no funcionales y optimizaciones de los tamaños de los mensajes. Aunque la serialización es una de las operaciones fundamentales para asegurar la adecuada transmisión de datos, las actuales implementaciones no son adecuadas para sistemas críticos y no hay alternativas. Este trabajo propone una serialización predecible que ha implicado el desarrollo de un nuevo compilador para la generación de código optimizado acorde al modelo computacional. La solución propuesta tiene la ventaja que en tiempo de compilación nos permite planificar las comunicaciones y ajustar el uso de memoria. Con el objetivo de validar el diseño e implementación se ha llevado a cabo un exigente proceso de validación con énfasis en: el comportamiento funcional, el uso de memoria, el uso del procesador (tiempo de respuesta de extremo a extremo y en cada uno de los bloques funcionales) y el uso de la red (consumo real conforme al estimado). Los buenos resultados obtenidos en una aplicación industrial desarrollada por Thales Avionics (un sistema de gestión de vuelo) y en las pruebas exhaustivas han demostrado que el diseño y el prototipo son fiables para aplicaciones industriales con estrictos requisitos temporales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane systems are computational equivalent to Turing machines. However, their distributed and massively parallel nature obtains polynomial solutions opposite to traditional non-polynomial ones. At this point, it is very important to develop dedicated hardware and software implementations exploiting those two membrane systems features. Dealing with distributed implementations of P systems, the bottleneck communication problem has arisen. When the number of membranes grows up, the network gets congested. The purpose of distributed architectures is to reach a compromise between the massively parallel character of the system and the needed evolution step time to transit from one configuration of the system to the next one, solving the bottleneck communication problem. The goal of this paper is twofold. Firstly, to survey in a systematic and uniform way the main results regarding the way membranes can be placed on processors in order to get a software/hardware simulation of P-Systems in a distributed environment. Secondly, we improve some results about the membrane dissolution problem, prove that it is connected, and discuss the possibility of simulating this property in the distributed model. All this yields an improvement in the system parallelism implementation since it gets an increment of the parallelism of the external communication among processors. Proposed ideas improve previous architectures to tackle the communication bottleneck problem, such as reduction of the total time of an evolution step, increase of the number of membranes that could run on a processor and reduction of the number of processors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La informática se está convirtiendo en la quinta utilidad (gas, agua, luz, teléfono) en parte debido al impacto de Cloud Computing en las mayorías de las organizaciones. Este uso de informática es usada por cada vez más tipos de sistemas, incluidos Sistemas Críticos. Esto tiene un impacto en la complejidad internad y la fiabilidad de los sistemas de la organización y los que se ofrecen a los clientes. Este trabajo investiga el uso de Cloud Computing por sistemas críticos, centrándose en las dependencias y especialmente en la fiabilidad de estos sistemas. Se han presentado algunos ejemplos de su uso, y aunque su utilización en sistemas críticos no está extendido, se presenta cual puede llegar a ser su impacto. El objetivo de este trabajo es primero definir un modelo que pueda representar de una forma cuantitativa las interdependencias en fiabilidad y interdependencia para las organizaciones que utilicen estos sistemas, y aplicar este modelo en un sistema crítico del campo de sanidad y mostrar sus resultados. Los conceptos de “macro-dependability” y “micro-dependability” son introducidos en el modelo para la definición de interdependencia y para analizar la fiabilidad de sistemas que dependen de otros sistemas. ABSTRACT With the increasing utilization of Internet services and cloud computing by most organizations (both private and public), it is clear that computing is becoming the 5th utility (along with water, electricity, telephony and gas). These technologies are used for almost all types of systems, and the number is increasing, including Critical Infrastructure systems. Even if Critical Infrastructure systems appear not to rely directly on cloud services, there may be hidden inter-dependencies. This is true even for private cloud computing, which seems more secure and reliable. The critical systems can began in some cases with a clear and simple design, but evolved as described by Egan to "rafted" networks. Because they are usually controlled by one or few organizations, even when they are complex systems, their dependencies can be understood. The organization oversees and manages changes. These CI systems have been affected by the introduction of new ICT models like global communications, PCs and the Internet. Even virtualization took more time to be adopted by Critical systems, due to their strategic nature, but once that these technologies have been proven in other areas, at the end they are adopted as well, for different reasons such as costs. A new technology model is happening now based on some previous technologies (virtualization, distributing and utility computing, web and software services) that are offered in new ways and is called cloud computing. The organizations are migrating more services to the cloud; this will have impact in their internal complexity and in the reliability of the systems they are offering to the organization itself and their clients. Not always this added complexity and associated risks to their reliability are seen. As well, when two or more CI systems are interacting, the risks of one can affect the rest, sharing the risks. This work investigates the use of cloud computing by critical systems, and is focused in the dependencies and reliability of these systems. Some examples are presented together with the associated risks. A framework is introduced for analysing the dependability and resilience of a system that relies on cloud services and how to improve them. As part of the framework, the concepts of micro and macro dependability are introduced to explain the internal and external dependability on services supplied by an external cloud. A pharmacovigilance model system has been used for framework validation.

Relevância:

100.00% 100.00%

Publicador: