947 resultados para Comparative and Evolutionary Physiology
Resumo:
The functional role of nitric oxide (NO) was investigated in the systemic and pulmonary circulations of the South American rattlesnake, Crotalus durissus terrificus. Bolus, intra-arterial injections of the NO donor, sodium nitroprusside (SNP) caused a significant systemic vasodilatation resulting in a reduction in systemic resistance (Rsys). This response was accompanied by a significant decrease in systemic pressure and a rise in systemic blood flow. Pulmonary resistance (Rpul) remained constant while pulmonary pressure (Ppul) and pulmonary blood flow (Qpul) decreased. Injection of L-Arginine (L-Arg) produced a similar response to SNP in the systemic circulation, inducing an immediate systemic vasodilatation, while Rpul was unaffected. Blockade of NO synthesis via the nitric oxide synthase inhibitor, L-NAME, did not affect haemodynamic variables in the systemic circulation, indicating a small contribution of NO to the basal regulation of systemic vascular resistance. Similarly, Rpul and Qpul remained unchanged, although there was a significant rise in Ppul. Via injection of SNP, this study clearly demonstrates that NO causes a systemic vasodilatation in the rattlesnake, indicating that NO may contribute in the regulation of systemic vascular resistance. In contrast, the pulmonary vasculature seems far less responsive to NO.
Resumo:
Here, we evaluated collagen distribution and matrix metalloproteinases (MMPs) MMP-2 and MMP-9 activities in skeletal muscle of pacu (Piaractus mesopotamicus) during juvenile and adult growth phases. Muscle samples from juvenile and adult fishes were processed by histochemistry for collagen system fibers and for gelatin-zymography for MMP-2 and MMP-9 activities analysis. Picrosirius staining revealed a myosept, endomysium, and perimysium-like structures in both growth phases and muscle types, with increased areas of collagen fibers in adults, mainly in red muscle. Reticulin staining showed that reticular fibers in the endomysium-like structure were thinner and discontinuous in the red muscle fibers. The zymography revealed clear bands of the pro-MMP-9, active-MMP-9, intermediate-MMP-2, and active-MMP-2 forms in red and white muscle in both growth phases. MMP-2 activity was more intense in juvenile than adult muscle fibers. Comparing the red and white muscle types, MMP-2 activity was significantly higher in red muscle in adult phase only. The activity of MMP-9 forms was similar in juvenile red and white muscles and in the adult red muscle, without any activity in adult white muscle. In conclusion, our results show that, in pacu, the higher activities of MMP-2 and -9 are associated with the rapid muscle growth in juvenile age and in adult fish, these activities are related with a different red and white muscle physiology. This study may contribute to the understanding muscle growth mechanisms and may also contribute to analyse red and the white muscle parameters of firmness and softness, respectively, of the commercial product. Anat Rec, 292:387-395, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
(1) Venom pools from Bothrops neuwiedi (Bn) and from two subspecies, namely Bothrops neuwiedi pauloensis (Bnp) and Bothrops neuwiedi urutu (Bnu), collected in the States of São Paulo (SP) and Minas Gerais (MG), Brazil, were electrophoretically examined. Basic toxins with different isoelectric points were identified in the venom collected in São Paulo (BnSP). These toxins were absent in the corresponding pools from Minas Gerais (BnMG, BnpMG and BnuMG). (2) BnSP, but not BnMG, BnpMG or BnuMG, showed two myotoxins (pI congruent to 8.6 and 8.8, respectively) which were isolated by ion-exchange chromatography on CM-Sepharose. (3) From BnMG, three myotoxic isoforms (pI congruent to 8.2 and M-r = 13600) were isolated by chromatography on CM-Sepharose followed by reversed-phase high-performance liquid chromatography. (4) the chemical and biological characterization of these toxins showed a high similarity with the Lys-49 myotoxins from other bothropic venoms. (5) Doses up to 5 LD50 (i.p.) of p-bromophenacyl bromide alkylated BnSP-7 caused a total loss of lethality in 18-22-g mice, thus indicating that the LD50 was increased by greater than 5-fold. At this dose myotoxicity was also not detectable, but the edematogenic activity on the rat paw apparently did not change. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
The activity of cytoplasmic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK) in kidney and liver, and in vivo gluconeogenic activity, were determined during different phases of prolonged fasting in quails. The fasting-induced changes in the activity of kidney cytoplasmic PEPCK were positively correlated with the changes in gluconeogenesis. Both activities increased at the initial phase (I) of fasting to levels 65% to 100% higher than fed values, and decreased during the protein-sparing period (phase II), although remaining higher than in fed birds. At the catabolic final phase (III) both kidney cytoplasmic PEPCK activity and gluconeogenesis increased markedly, attaining levels 115% to 150% higher than fed values. The activity of liver cytoplasmic PEPCK, present in appreciable amounts in quails, did not change during phases I and II of fasting, but increased to levels 60% higher than fed values at the final phase (III). Plasma glucose levels at phase III did not differ significantly from those at phases I and II. In both kidney and liver the activity of the mitochondrial PEPCK was not significantly affected by fasting. The data suggest that the kidney cytoplasmic PEPCK is the main enzyme responsible for gluconeogenesis adjustments during food deprivation in quails, and that this function is complemented at the final phase by enzyme present in liver cytosol.
Resumo:
Metabolic changes during the transition from post-feeding to fasting were studied in Brycon cephalus, an omnivorous teleost from the Amazon Basin in Brazil. Body weight and somatic indices (liver and digestive tract), glycogen and glucose content in liver and muscle, as well as plasma glucose, free fatty acids (FFA), insulin and glucagon levels of B. cephalus, were measured at 0, 12, 24, 48, 72, 120, 168 and 336 h after the last feeding. At time 0 h (the moment of food administration, 09.00 h) plasma levels of insulin and glucagon were already high, and relatively high values were maintained until 24 h post-feeding. Glycemia was 6.42 +/- 0.82 mM immediately after food ingestion and 7.53 +/- 1.12 MM at 12 h. Simultaneously, a postprandial replenishment of liver and muscle glycogen reserves was observed. Subsequently, a sharp decrease of plasma insulin occurred, from 7.19 +/- 0.83 ng/ml at 24 h of fasting to 5.27 +/- 0.58 ng/ml at 48 h. This decrease coincided with the drop in liver glucose and liver glycogen, which reached the lowest value at 72 h of fasting (328.56 +/- 192.13 and 70.33 +/- 14.13 mumol/g, respectively). Liver glucose increased after 120 h and reached a peak 168 h post-feeding, which suggests that hepatic gluconeogenesis is occurring. Plasma FFA levels were low after 120 and 168 h and increased again at 336 h of fasting. During the transition from post-feeding to fast condition in B. cephalus, the balance between circulating insulin and glucagon quickly adjust its metabolism to the ingestion or deprivation of food. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Strains belonging to three novel yeast species, Candida heliconiae (four isolates), Candida picinguabensis (three isolates) and Candida saopaulonensis (two isolates), were recovered in the year 2000 from water of flower bracts of Heliconia velloziana L. Emigd. (Heliconiaceae) found in a forest ecosystem site in an Atlantic rainforest of south-eastern Brazil. C. picinguabensis and C. saopaulonensis were nearly identical in morphology and physiology, but sequence divergence in the D1/D2 domain of the large-subunit rDNA indicated that they should be regarded as different species. They belong to the Metschnikowiaceae clade. C. heliconiae had affinities to Pichia mexicana and related species, but was genetically isolated from all currently accepted species in that group. The type strains are C. heliconiae UNESP 00-91 C1(T) (= CBS 10000(T) = NRRL Y-27813(T)), C. picinguabensis UNESP 00-89(T) (= CBS 9999(T) = NRRL Y-27814(T)) and C. saopaulonensis UNESP 00-99(T) (=CBS 10001(T) = NRRL Y-27815(T)).
Resumo:
In most reptiles, the ventilatory response to hypercapnia consists of large increases in tidal volume (V-T), whereas the effects on breathing frequency (f(R)) are more variable. The increased V-T seems to arise from direct inhibition of pulmonary stretch receptors. Most reptiles also exhibit a transitory increase in ventilation upon removal of CO2 and this post-hypercapnic hyperpnea may consist of changes in both V-T and f(R). While it is well established that increased body temperature augments the ventilatory response to hypercapnia, the effects of temperature on the post-hypercapnic hyperpnea is less described. In the present study, we characterise the ventilatory response of the agamid lizard Uromastyx aegyptius to hypercapnia and upon the return to air at 25 and 35 degreesC. At both temperatures, hypercapnia caused large increases in V-T and small reductions in f(R), that were most pronounced at the higher temperature. The post-hypercapnic hyperpnea, which mainly consisted of increased fR, was numerically larger at 35 compared to 25 degreesC. However, when expressed as a proportion of the levels of ventilation reached during steady-state hypercapnia, the post-hypercapnic hyperpnea was largest at 25 degreesC. Some individuals exhibited buccal pumping where each expiratory thoracic breath was followed by numerous small forced inhalations caused by contractions of the buccal cavity. This breathing pattern was most pronounced during severe hypercapnia and particularly evident during the post-hypercapnic hyperpnea. (C) 2002 Published by Elsevier B.V.
Resumo:
The ability of rattlesnake (Crotalus durissus terrificus) red blood cells to volume regulate in vitro has been investigated. Blood was drawn through a catheter inserted in the dorsal aorta and equilibrated to gas mixtures of different composition. Cells shrunken osmotically by increasing the extracellular osmolarity from approximate to 291 mosm l(-1) (n = 3) to approximate to 632 mosm l(-1) (calculated) only partially regulated their volume back towards the original volume either at pH 7.51 +/- 0.05 (mean +/- S.D., n = 5) or pH 7.20 +/- 0.06 (mean +/- S.D., n = 3), There was no improvement of the regulatory volume increase at low haemoglobin oxygen saturation. The limited volume restoration was inhibited by separate additions of amiloride (10(-4) M) or DIDS (10(-4) M) suggesting involvement of the Na+/H+ and Cl-/HCO3- exchangers. Cells that were swollen osmotically by an approximate to 30% dilution of the extracellular medium also exhibited a limited ability to recover their volume. Therefore, these cells show little ability to volume regulate when exposed to in vitro conditions that shrink or swell the cell. (C) 2000 Elsevier B.V. All rights reserved.
Resumo:
The effects of temperature on lung and blood gases were measured in the South American rattlesnake (Crotalus durissus terrificus). Arterial blood and lung gas samples were obtained from chronically cannulated animals at 15, 25, and 35 degrees C. As expected for reptiles, arterial pH fell with increased temperature (0.018 U degrees C-1 between 15 and 25 degrees C and 0.011 U degrees C-1 between 25 and 35 degrees C) while lung gas PCO2 rose from 5.8 mmHg at 15 degrees C to 13.2 mmHg at 35 degrees C. Concurrently, lung gas PO2 declined from 132 mmHg at 15 degrees C to 120 mmHg at 35 degrees C, and arterial PO2 increased from 33 to 76 mmHg in that temperature range. Arterial haemoglobin O-2 saturation rose from 0.53 at 15 degrees C to 0.83 at 25 degrees C but became slightly reduced (0.77) with a further elevation of temperature to 35 degrees C. Arterial haemoglobin concentration increased from 1.96 to 2.53 mM between 15 and 35 degrees C, consistent with higher demands on oxygen delivery to tissues at elevated temperatures. Moreover, the substantial increase of haemoglobin O-2 saturation between 15 and 25 degrees C conforms to the idea that reduction of the central vascular right-to-left shunt (pulmonary bypass of systemic venous return) is associated with high metabolic demands. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
In order to study the relative roles of receptors in the upper airways, lungs and systemic circulation in modulating the ventilatory response of caiman (Caiman latirostris) to inhaled CO2, gas mixtures of varying concentrations of CO2 Were administered to animals breathing through an intact respiratory system, via a tracheal cannula by-passing the upper airways (before and after vagotomy), or via a cannula delivering gas to the upper airways alone. While increasing levels of hypercarbia led to a progressive increase in tidal volume in animals with intact respiratory systems (Series 1), breathing frequency did not change until the CO2 level reached 7%, at which time it decreased. Despite this, at the higher levels of hypercarbia, the net effect was a large and progressive increase in total ventilation. There were no associated changes in heart rate or arterial blood pressure. on return to air, there was an immediate change in breathing pattern; breathing frequency increased above air-breathing values, roughly to the same maximum level regardless of the level of CO2 the animal had been previously breathing, and tidal volume returned rapidly toward resting (baseline) values. Total ventilation slowly returned to air breathing values. Administration of CO2 via different routes indicated that inhaled CO2 acted at both upper airway and pulmonary CO2-sensitive receptors to modify breathing pattern without inhibiting breathing overall. Our data suggest that in caiman, high levels of inspired CO2 promote slow, deep breathing. This will decrease deadspace ventilation and may reduce stratification in the saccular portions of the lung.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study examined the location and distribution of O-2 chemoreceptors involved in cardio-respiratory responses to hypoxia in the neotropical teleost, the pacu (Piaractus mesopotamicus). Intact fish and fish experiencing progressive gill denervation by selective transection of cranial nerves IX and X were exposed to gradual hypoxia and submitted to intrabuccal and intravenous injections of NaCN while their heart rate, ventilation rate and ventilation amplitude were measured. The chemoreceptors producing reflex bradycardia were confined to, but distributed along all gill arches, and were sensitive to O-2 levels in the water and the blood. Ventilatory responses to all stimuli, though modified, continued following gill denervation, however, indicating the presence of internally and externally oriented receptors along all gill arches and either in the pseudobranch or at extra-branchial sites. Chemoreceptors located on the first pair of gill arches and innervated by the glossopharyngeal nerve appeared to attenuate the cardiac and respiratory responses to hypoxia. The data indicate that the location and distribution of cardio-respiratory O-2 receptors are not identical to those in tambaqui (Colossoma macropomum) despite their similar habitats and close phylogenetic lineage, although the differences between the two species could reduce to nothing more than the presence or absence of the pseudobranch.
Resumo:
The arachnids of the order Opiliones (harvestmen) produce substances used in defense. In the present paper, we analyzed 22 species of Gonyleptidae to explore the use of defensive substances in taxonomy and evolutionary biology. Thirty-seven different compounds were detected, 18 of which were preliminarily identified. These compounds were mapped onto a phylogenetic tree showing the relationships within the Gonyleptidae. Data from Cosmetidae were used as an outgroup. Five ketones and six alkyl phenols were reported for the first time in harvestmen. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Thoracic, abdominal, and pelvic fragments of ventral skin of Rana catesbeiana were analysed regarding the effect of oxytocin on: (1) transepithelial water transport; (2) short-circuit current, (3) skin conductance and electrical potential difference; (4) Na+ conductance, the electromotive force of the Nat transport mechanism, and shunt conductance; (5) short-circuit current responses to fast Na+ by K+ replacement in the outer compartment, and (6) epithelial microstructure. Unstimulated water and Na+ permeabilities were low along the ventral skin. Hydrosmotic and natriferic responses to oxytocin increased from thorax to pelvis, Unstimulated Na+ conductance was greater in pelvis than in abdomen, the other electrical parameters being essentially similar in both skin fragments. Contribution of shunt conductance to total skin conductance was higher in abdominal than in pelvic skin. Oxytocin-induced increases of total skin conductance, Na+ conductance, and shunt conductance in pelvis were significantly larger than in abdomen, An oscillatory behaviour of the short-circuit current was observed only in oxytocin-treated pelvic skins. Decrease of epithelial thickness and increase of mitochondria-rich cell number were observed from thorax to pelvis, Oxytocin-induced increases of interspaces were more conspicuous in pelvis and abdomen than in thorax.