834 resultados para Collapsed objects and Supernovae
Resumo:
Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound
Resumo:
Interaction with smart objects can be accomplished with different technologies, such as tangible interfaces or touch computing, among others. Some of them require the object to be especially designed to be 'smart', and some other are limited in the variety and complexity of the possible actions. This paper describes a user-smart object interaction model and prototype based on the well known event-condition-action (ECA) reasoning, which can work, to a degree, independently of the intelligence embedded into the smart object. It has been designed for mobile devices to act as mediators between users and smart objects and provides an intuitive means for personalization of object's behavior. When the user is close to an object, this one publishes its 'event & action' capabilities to the user's device. The user may accept the object's module offering, which will enable him to configure and control that object, but also its actions with respect to other elements of the environment or the virtual world. The modular ECA interaction model facilitates the integration of different types of objects in a smart space, giving the user full control of their capabilities and facilitating creative mash-uping to build customized functionalities that combine physical and virtual actions
Resumo:
The ontologies of space and territory, our experience of them and the techniques we use to govern them, the very conception of the socio-spatial formations that we inhabit, are all historically specific: they depend on a genealogy of practices, knowledges, discourses, regulations, performances and representations articulated in a way that is extremely complex yet nevertheless legible over time. In this interview we look at the logic and the patterns that intertwine space and time — both as objects and tools of inquiry — though a cross-disciplinary dialogue. The discussion with Stuart Elden and Derek Gregory covers the place of history in socio-spatial theory and in their own work, old and new ways of thinking about the intersection between history and territory, space and time, the implications of geography and history for thinking about contemporary politics, and the challenges now faced by critical thought and academic work in the current neo-liberal attack on public universities and the welfare state
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
A number of data description languages initially designed as standards for trie WWW are currently being used to implement user interfaces to programs. This is done independently of whether such programs are executed in the same or a different host as trie one running the user interface itself. The advantage of this approach is that it provides a portable, standardized, and easy to use solution for the application programmer, and a familiar behavior for the user, typically well versed in the use of WWW browsers. Among the proposed standard description languages, VRML is a aimed at representing three dimensional scenes including hyperlink capabilities. VRML is already used as an import/export format in many 3-D packages and tools, and has been shown effective in displaying complex objects and scenarios. We propose and describe a Prolog library which allows parsing and checking VRML code, transforming it, and writing it out as VRML again. The library converts such code to an internal representation based on first order terms which can then be arbitrarily manipulated. We also present as an example application the use of this library to implement a novel 3-D visualization for examining and understanding certain aspects of the behavior of CLP(FD) programs.
Resumo:
We present a technique to reconstruct the electromagnetic properties of a medium or a set of objects buried inside it from boundary measurements when applying electric currents through a set of electrodes. The electromagnetic parameters may be recovered by means of a gradient method without a priori information on the background. The shape, location and size of objects, when present, are determined by a topological derivative-based iterative procedure. The combination of both strategies allows improved reconstructions of the objects and their properties, assuming a known background.
Resumo:
A workflow-centric research object bundles a workflow, the provenance of the results obtained by its enactment, other digital objects that are relevant for the experiment (papers, datasets, etc.), and annotations that semantically describe all these objects. In this paper, we propose a model to specify workflow-centric research objects, and show how the model can be grounded using semantic technologies and existing vocabularies, in particular the Object Reuse and Exchange (ORE) model and the Annotation Ontology (AO).We describe the life-cycle of a research object, which resembles the life-cycle of a scienti?c experiment.
Resumo:
We propose a new Bayesian framework for automatically determining the position (location and orientation) of an uncalibrated camera using the observations of moving objects and a schematic map of the passable areas of the environment. Our approach takes advantage of static and dynamic information on the scene structures through prior probability distributions for object dynamics. The proposed approach restricts plausible positions where the sensor can be located while taking into account the inherent ambiguity of the given setting. The proposed framework samples from the posterior probability distribution for the camera position via data driven MCMC, guided by an initial geometric analysis that restricts the search space. A Kullback-Leibler divergence analysis is then used that yields the final camera position estimate, while explicitly isolating ambiguous settings. The proposed approach is evaluated in synthetic and real environments, showing its satisfactory performance in both ambiguous and unambiguous settings.
Resumo:
In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Learning Objects facilitate reuse leading to cost and time savings as well as to the enhancement of the quality of educational resources. However, teachers find it difficult to create or to find high quality Learning Objects, and the ones they find need to be customized. Teachers can overcome this problem using suitable authoring systems that enable them to create high quality Learning Objects with little effort. This paper presents an open source online e-Learning authoring tool called ViSH Editor together with four novel interactive Learning Objects that can be created with it: Flashcards, Virtual Tours, Enriched Videos and Interactive Presentations. All these Learning Objects are created as web applications, which can be accessed via mobile devices. Besides, they can be exported to SCORM including their metadata in IEEE LOM format. All of them are described in the paper including an example of each. This approach for creating Learning Objects was validated through two evaluations: a survey among authors and a formal quality evaluation of 209 Learning Objects created with the tool. The results show that ViSH Editor facilitates educators the creation of high quality Learning Objects.
Resumo:
Estudios recientes promueven la integración de estímulos multisensoriales en activos multimedia con el fin de mejorar la experiencia de usuario mediante la estimulación de nuevos sentidos, más allá de la tradicional experiencia audiovisual. Del mismo modo, varios trabajos proponen la introducción de componentes de interacción capaces de complementar con nuevas características, funcionalidades y/o información la experiencia multimedia. Efectos sensoriales basados en el uso de nuevas técnicas de audio, olores, viento, vibraciones y control de la iluminación, han demostrado tener un impacto favorable en la sensación de Presencia, en el disfrute de la experiencia multimedia y en la calidad, relevancia y realismo de la misma percibidos por el usuario. Asimismo, los servicios basados en dos pantallas y la manipulación directa de (elementos en) la escena de video tienen el potencial de mejorar la comprensión, la concentración y la implicación proactiva del usuario en la experiencia multimedia. El deporte se encuentra entre los géneros con mayor potencial para integrar y explotar éstas soluciones tecnológicas. Trabajos previos han demostrado asimismo la viabilidad técnica de integrar éstas tecnologías con los estándares actualmente adoptados a lo largo de toda la cadena de transmisión de televisión. De este modo, los sistemas multimedia enriquecidos con efectos sensoriales, los servicios interactivos multiplataforma y un mayor control del usuario sobre la escena de vídeo emergen como nuevas formas de llevar la multimedia immersiva e interactiva al mercado de consumo de forma no disruptiva. Sin embargo, existen numerosas interrogantes relativas a los efectos sensoriales y/o soluciones interactivas más adecuadas para complementar un contenido audiovisual determinado o a la mejor manera de de integrar y combinar dichos componentes para mejorar la experiencia de usuario de un segmento de audiencia objetivo. Además, la evidencia científica sobre el impacto de factores humanos en la experiencia de usuario con estas nuevas formas de immersión e interacción en el contexto multimedia es aún insuficiente y en ocasiones, contradictoria. Así, el papel de éstos factores en el potencial de adopción de éstas tecnologías ha sido amplia-mente ignorado. La presente tesis analiza el impacto del audio binaural, efectos sensoriales (de iluminación y olfativos), interacción con objetos 3D integrados en la escena de vídeo e interacción con contenido adicional utilizando una segunda pantalla en la experiencia de usuario con contenidos de deporte. La posible influencia de dichos componentes en las variables dependientes se explora tanto a nivel global (efecto promedio) como en función de las características de los usuarios (efectos heterogéneos). Para ello, se ha llevado a cabo un experimento con usuarios orientado a explorar la influencia de éstos componentes immersivos e interactivos en dos grandes dimensiones de la experiencia multimedia: calidad y Presencia. La calidad de la experiencia multimedia se analiza en términos de las posibles variaciones asociadas a la calidad global y a la calidad del contenido, la imagen, el audio, los efectos sensoriales, la interacción con objetos 3D y la interacción con la segunda pantalla. El posible impacto en la Presencia considera dos de las dimensiones definidas por el cuestionario ITC-SOPI: Presencia Espacial (Spatial Presence) e Implicación (Engagement). Por último, los individuos son caracterizados teniendo en cuenta los siguientes atributos afectivos, cognitivos y conductuales: preferencias y hábitos en relación con el contenido, grado de conocimiento de las tecnologías integradas en el sistema, tendencia a involucrarse emocionalmente, tendencia a concentrarse en una actividad bloqueando estímulos externos y los cinco grandes rasgos de la personalidad: extroversión, amabilidad, responsabilidad, inestabilidad emocional y apertura a nuevas experiencias. A nivel global, nuestro estudio revela que los participantes prefieren el audio binaural frente al sistema estéreo y que los efectos sensoriales generan un aumento significativo del nivel de Presencia Espacial percibido por los usuarios. Además, las manipulaciones experimentales realizadas permitieron identificar una gran variedad de efectos heterogéneos. Un resultado interesante es que dichos efectos no se encuentran distribuidos de forma equitativa entre las medidas de calidad y Presencia. Nuestros datos revelan un impacto generalizado del audio binaural en la mayoría de las medidas de calidad y Presencia analizadas. En cambio, la influencia de los efectos sensoriales y de la interacción con la segunda pantalla se concentran en las medidas de Presencia y calidad, respectivamente. La magnitud de los efectos heterogéneos identificados está modulada por las siguientes características personales: preferencias en relación con el contenido, frecuencia con la que el usuario suele ver contenido similar, conocimiento de las tecnologías integradas en el demostrador, sexo, tendencia a involucrarse emocionalmente, tendencia a a concentrarse en una actividad bloqueando estímulos externos y niveles de amabilidad, responsabilidad y apertura a nuevas experiencias. Las características personales consideradas en nuestro experimento explicaron la mayor parte de la variación en las variables dependientes, confirmando así el importante (y frecuentemente ignorado) papel de las diferencias individuales en la experiencia multimedia. Entre las características de los usuarios con un impacto más generalizado se encuentran las preferencias en relación con el contenido, el grado de conocimiento de las tecnologías integradas en el sistema y la tendencia a involucrarse emocionalmente. En particular, los primeros dos factores parecen generar un conflicto de atención hacia el contenido versus las características/elementos técnicos del sistema, respectivamente. Asimismo, la experiencia multimedia de los fans del fútbol parece estar modulada por procesos emociona-les, mientras que para los no-fans predominan los procesos cognitivos, en particular aquellos directamente relacionados con la percepción de calidad. Abstract Recent studies encourage the integration of multi-sensorial stimuli into multimedia assets to enhance the user experience by stimulating other senses beyond sight and hearing. Similarly, the introduction of multi-modal interaction components complementing with new features, functionalities and/or information the multimedia experience is promoted. Sensory effects as odor, wind, vibration and light effects, as well as an enhanced audio quality, have been found to favour media enjoyment and to have a positive influence on the sense of Presence and on the perceived quality, relevance and reality of a multimedia experience. Two-screen services and a direct manipulation of (elements in) the video scene have the potential to enhance user comprehension, engagement and proactive involvement of/in the media experience. Sports is among the genres that could benefit the most from these solutions. Previous works have demonstrated the technical feasibility of implementing and deploying end-to-end solutions integrating these technologies into legacy systems. Thus, sensorially-enhanced media, two-screen services and an increased user control over the displayed scene emerge as means to deliver a new form of immersive and interactive media experiences to the mass market in a non-disruptive manner. However, many questions remain concerning issues as the specific interactive solutions or sensory effects that can better complement a given audiovisual content or the best way in which to integrate and combine them to enhance the user experience of a target audience segment. Furthermore, scientific evidence on the impact of human factors on the user experience with these new forms of immersive and interactive media is still insufficient and sometimes, contradictory. Thus, the role of these factors on the potential adoption of these technologies has been widely ignored. This thesis analyzes the impact of binaural audio, sensory (light and olfactory) effects, interaction with 3D objects integrated into the video scene and interaction with additional content using a second screen on the sports media experience. The potential influence of these components on the dependent variables is explored both at the overall level (average effect) and as a function of users’ characteristics (heterogeneous effects). To these aims, we conducted an experimental study exploring the influence of these immersive and interactive elements on the quality and Presence dimensions of the media experience. Along the quality dimension, we look for possible variations on the quality scores as-signed to the overall media experience and to the media components content, image, audio, sensory effects, interaction with 3D objects and interaction using the tablet device. The potential impact on Presence is analyzed by looking at two of the four dimensions defined by the ITC-SOPI questionnaire, namely Spatial Presence and Engagement. The users’ characteristics considered encompass the following personal affective, cognitive and behavioral attributes: preferences and habits in relation to the content, knowledge of the involved technologies, tendency to get emotionally involved and tendency to get absorbed in an activity and block out external distractors and the big five personality traits extraversion, agreeableness, conscientiousness, neuroticism and openness to experience. At the overall level, we found that participants preferred binaural audio than standard stereo audio and that sensory effects increase significantly the level of Spatial Presence. Several heterogeneous effects were also revealed as a result of our experimental manipulations. Interestingly, these effects were not equally distributed across the quality and Presence measures analyzed. Whereas binaural audio was foud to have an influence on the majority of the quality and Presence measures considered, the effects of sensory effects and of interaction with additional content through the tablet device concentrate mainly on the dimensions of Presence and on quality measures, respectively. The magnitude of these effects was modulated by individual’s characteristics, such as: preferences in relation to the content, frequency of viewing similar content, knowledge of involved technologies, gender, tendency to get emotionally involved, tendency to absorption and levels of agreeableness, conscientiousness and openness to experience. The personal characteristics collected in our experiment explained most of the variation in the dependent variables, confirming the frequently neglected role of individual differences on the media experience. Preferences in relation to the content, knowledge of involved technologies and tendency to get emotionally involved were among the user variables with the most generalized influence. In particular, the former two features seem to present a conflict in the allocation of attentional resources towards the media content versus the technical features of the system, respectively. Additionally, football fans’ experience seems to be modulated by emotional processes whereas for not fans, cognitive processes (and in particular those related to quality judgment) prevail.
Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms
Resumo:
We present a multichannel tomographic technique to detect fluorescent objects embedded in thick (6.4 cm) tissue-like turbid media using early-arriving photons. The experiments use picosecond laser pulses and a streak camera with single photon counting capability to provide short time resolution and high signal-to-noise ratio. The tomographic algorithm is based on the Laplace transform of an analytical diffusion approximation of the photon migration process and provides excellent agreement between the actual positions of the fluorescent objects and the experimental estimates. Submillimeter localization accuracy and 4- to 5-mm resolution are demonstrated. Moreover, objects can be accurately localized when fluorescence background is present. The results show the feasibility of using early-arriving photons to image fluorescent objects embedded in a turbid medium and its potential in clinical applications such as breast tumor detection.