976 resultados para Cold regions engineering
Resumo:
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load-bearing and non-load bearing structural elements. These buildings must be properly evaluated after a fire event to assess the nature and extent of structural damage. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the structural capacity of cold-formed steel members in these buildings has been affected. Elevated temperatures during a fire event affect the structural performance of cold-formed steel members even after cooling down to ambient temperature due to the possible detrimental changes in their mechanical properties. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past and hence there is a need to investigate the post-fire mechanical properties of cold-formed steels. Therefore an experimental study was undertaken at the Queensland University of Technology to understand the residual mechanical properties of cold-formed steels after fire events. Tensile coupon tests were conducted on three different steel grades and thicknesses to obtain their stress-strain curves and relevant mechanical properties after cooling them down from different elevated temperatures. It was found that the post-fire mechanical properties of cold-formed steels are different to the original ambient temperature mechanical properties. Hence a new set of equations is proposed to predict the reduced mechanical properties of cold-formed steels after a fire event.
Resumo:
Cold-formed steel members are often subject to axial compression loads in a range of applications. These thin-walled members can be subject to various types of buckling modes, including flexural-torsional buckling. Design standards provide guidelines for columns subject to flexural-torsional buckling modes at ambient temperature. However, there are no specific design guidelines for elevated temperature conditions. Hence extensive research efforts have gone into the many investigations addressing the flexural-torsional buckling behaviour of cold-formed steel columns at elevated temperatures.This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current ambient temperature Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures by simply using the appropriate elevated temperature mechanical properties. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This research has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses. This paper presents the details of this research study and the results.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings will be exposed to elevated temperatures. Hence after such events there is a need to evaluate the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This means conservative decisions are often made in relation to fire exposed building structures. This research is aimed at investigating the buckling capacities of fire exposed cold-formed lipped channel steel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperatures before they were tested to failure. Similarly tensile coupon tests were also undertaken after being exposed to various elevated temperatures, from which the residual mechanical properties (yield stress and Young’s modulus) of the steels used in this study were derived. Using these mechanical properties, the residual compression capacities of tested short columns were predicted using the currently used design rules in AS/NZS 4600 and AISI cold-formed steel standards. This comparison showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of fire exposed buildings. This paper presents the details of this experimental study and the results.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings can be exposed to elevated temperatures. Hence after such events there is a need to evaluate their residual strengths. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This research is aimed at investigating the distortional buckling capacities of fire exposed cold-formed lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC, and then tested to failure after cooling down. Suitable finite element models were developed with post-fire mechanical properties to simulate the behaviour of tested columns and were validated using test results. The residual compression capacities of short columns were also predicted using the current cold-formed steel standards and compared with test and finite element analysis results. This comparison showed that ambient temperature design rules for columns can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the column can be estimated after a fire event. Such residual capacity assessments will allow engineers to evaluate the safety of fire exposed buildings. This paper presents the details of this experimental study, finite element analyses and the results.
Resumo:
Social resilience concepts are gaining momentum in environmental planning through an emerging understanding of the socio-ecological nature of biophysical systems. There is a disconnect, however, between these concepts and the sociological and psychological literature related to social resilience. Further still, both schools of thought are not well connected to the concepts of social assessment (SA) and social impact assessment (SIA) that are the more standard tools supporting planning and decision-making. This raises questions as to how emerging social resilience concepts can translate into improved SA/SIA practices to inform regional-scale adaptation. Through a review of the literature, this paper suggests that more cross-disciplinary integration is needed if social resilience concepts are to have a genuine impact in helping vulnerable regions tackle climate change.
Resumo:
This paper presents the details of full scale fire tests of LSF wall panels conducted using realistic fire time-temperature curves. Tests included eight LSF wall specimens of various configurations exposed to both parametric design and natural fire curves. Details of the fire test set-up, test procedure and the results including the measured time-temperature and deformation curves of LSF wall panels are presented along with wall stud failure modes and times. This paper also compares the structural and thermal behavioural characteristics of LSF wall studs with those based on the standard time-temperature curve. Finally, the stud failure times and temperatures are summarized for both standard and realistic design fire curves. This study provides the necessary test data to validate the numerical models of LSF wall panels and to undertake a detailed study into the structural and thermal performance of LSF wall panels exposed to realistic design fire curves.
Resumo:
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modern buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behaviour in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modern residential buildings are proposed for the testing of LSF walls.
Resumo:
The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.
Resumo:
Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.
Resumo:
BACKGROUND Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and 2010 with methods to enable meaningful comparisons over time. METHODS We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability (YLDs). DALYs were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and global estimates of disease burden for three points in time with strictly comparable definitions and methods. YLLs were calculated from age-sex-country-time-specific estimates of mortality by cause, with death by standardised lost life expectancy at each age. YLDs were calculated as prevalence of 1160 disabling sequelae, by age, sex, and cause, and weighted by new disability weights for each health state. Neither YLLs nor YLDs were age-weighted or discounted. Uncertainty around cause-specific DALYs was calculated incorporating uncertainty in levels of all-cause mortality, cause-specific mortality, prevalence, and disability weights. FINDINGS Global DALYs remained stable from 1990 (2·503 billion) to 2010 (2·490 billion). Crude DALYs per 1000 decreased by 23% (472 per 1000 to 361 per 1000). An important shift has occurred in DALY composition with the contribution of deaths and disability among children (younger than 5 years of age) declining from 41% of global DALYs in 1990 to 25% in 2010. YLLs typically account for about half of disease burden in more developed regions (high-income Asia Pacific, western Europe, high-income North America, and Australasia), rising to over 80% of DALYs in sub-Saharan Africa. In 1990, 47% of DALYs worldwide were from communicable, maternal, neonatal, and nutritional disorders, 43% from non-communicable diseases, and 10% from injuries. By 2010, this had shifted to 35%, 54%, and 11%, respectively. Ischaemic heart disease was the leading cause of DALYs worldwide in 2010 (up from fourth rank in 1990, increasing by 29%), followed by lower respiratory infections (top rank in 1990; 44% decline in DALYs), stroke (fifth in 1990; 19% increase), diarrhoeal diseases (second in 1990; 51% decrease), and HIV/AIDS (33rd in 1990; 351% increase). Major depressive disorder increased from 15th to 11th rank (37% increase) and road injury from 12th to 10th rank (34% increase). Substantial heterogeneity exists in rankings of leading causes of disease burden among regions. INTERPRETATION Global disease burden has continued to shift away from communicable to non-communicable diseases and from premature death to years lived with disability. In sub-Saharan Africa, however, many communicable, maternal, neonatal, and nutritional disorders remain the dominant causes of disease burden. The rising burden from mental and behavioural disorders, musculoskeletal disorders, and diabetes will impose new challenges on health systems. Regional heterogeneity highlights the importance of understanding local burden of disease and setting goals and targets for the post-2015 agenda taking such patterns into account. Because of improved definitions, methods, and data, these results for 1990 and 2010 supersede all previously published Global Burden of Disease results.
Resumo:
This paper reports on the methodology and results of a weak-coupled aerothermalstructural analysis on the ascent phase of the SCRAMSPACE Mach 8 scramjet flight experiment. This vehicle was essentially un-shrouded during the flight trajectory, relying on the thin, 5mm thick aluminium external shell of the payload to maintain structural integrity and protect the flight experiment. As such, understanding the thermal-structural response of the vehicle was imperative to mission success. Using two- and three-dimensional models, an iterative procedure was employed to compute the flowfield, convective heating, wall temperatures and structural coupling at flight times covering both peak heating and peak surface temperature. Accounting for such coupling resulted in a 150K reduction in wall temperature compared to the more conservative cold wall assumption. Despite this, peak temperatures remained of the order of 550 K. Further, thermally induced stresses within these regions were in excess of four times the material failure limits. Irreversible material failure during ascent was therefore concluded likely to occur on the external shell. Two alternate materials, steel 1006 and copper, were therefore assessed with the results indicating that steel sections on the external shell resulted in the best thermal-structural response of the payload.
Resumo:
Elevated levels of fungi in indoor environments have been linked with mould/moisture damage in building structures. However, there is a lack of information about “normal” concentrations and flora as well as guidelines of viable fungi in the school environment in different climatic conditions. We have reviewed existing guidelines for indoor fungi and the current knowledge of the concentrations and flora of viable fungi in different climatic areas, the impact of the local factors on concentrations and flora of viable fungi in school environments. Meta-regression was performed to estimate the average behaviour for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3). These concentrations were significantly higher for both outdoors and indoors in the moderate than in the continental climatic area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi. The most common fungal species both in the moderate and continental area were Cladosporium spp. and Penicillium spp. The suggested few quantitative guidelines for indoor air viable fungi for school buildings are much lower than for residential areas. This review provides a synthesis, which can be used to guide the interpretation of the fungi measurements results and help to find indications of mould/moisture in school building structures.
Resumo:
The primary purpose of this paper is to overview a selection of advanced water treatment technology systems that are suited for application in towns and settlements in remote and very remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. This recognises that sanitation and water treatment are inextricably linked and both are needed to reduce risks to environment and population health from contaminated water sources. For both Australia and Sri Lanka only a small fraction of the settlements in rural and remote regions are connected to water treatment facilities and town water supplies. In Australia’s remote/very remote regions raw water is drawn from underground sources and rainwater capture. Most settlements in rural Sri Lanka rely on rivers, reservoirs, wells, springs or carted water. Furthermore, Sri Lanka has more than 25,000 hand pumped tube wells which saved the communities during recent droughts. Decentralised water supply systems offer the opportunity to provide safe drinking water to these remote/very remote and rural regions where centralised systems are not feasible due to socio-cultural, economic, political, technological reasons. These systems reduce health risks from contaminated water supplies. In remote areas centralized systems fail due to low population density and less affordability. Globally, a new generation of advanced water treatment technologies are positioned to make a major impact on the provision of safe potable water in remote/very remote regions in Australia and rural regions in Sri Lanka. Some of these systems were developed for higher income countries. However, with careful selection and further research they can be tailored to match local socio-economic conditions and technical capacity. As such, they can equally be used to provide decentralised water supply in communities in developed and developing countries such as Australia and Sri Lanka.
Resumo:
This paper reports the details of an experimental study of cold-formed steel hollow section columns at ambient and elevated temperatures. In this study the global buckling behaviour of cold-formed Square Hollow Section (SHS) slender columns under axial compression was investigated at various uniform elevated temperatures up to 700℃. The results of these column tests are reported in this paper, which include the buckling/failure modes at elevated temperatures, and ultimate load versus temperature curves. Finite element models of tested columns were also developed and their behaviour and ultimate capacities at ambient and elevated temperatures were studied. Fire design rules given in European and American standards including the Direct Strength Method (DSM) based design rules were used to predict the ultimate capacities of tested columns at elevated temperatures. Elevated temperature mechanical properties and stress-strain models given in European steel design standards and past researches were used with design rules and finite element models to investigate their effects on SHS column capacities. Comparisons of column capacities from tests and finite element analyses with those predicted by current design rules were used to determine the accuracy of currently available column design rules in predicting the capacities of SHS columns at elevated temperatures and the need to use appropriate elevated temperature material stress-strain models. This paper presents the important findings derived from the comparisons of these column capacities.