920 resultados para Cognitive Processing
Resumo:
Many discussions about the music processing have occurred over the years. It is stated, on one hand, the existence of a single joint for grasping the music or any of its attributes by the Central Nervous System. Furthermore, it is claimed also the existence of multiple and diverse systems to understand each aspect of music. In general, model-independent set, studies focusing on the processing of sound components, specifically the musical tones, can significantly clarify the basic functioning of the auditory system and other higher brain functions. In this sense, one of the most prominent approaches in the study of sensory and perceptual processes of hearing, or changed unharmed, has been Neuroscience, which is interested in the interaction between the brain areas corresponding to different cognitive processes. Thus, the purpose of this study was to review the studies that dealt processing models of the attributes of tonal Western music, based on the conception that neuropsychological neural structures are interdependent sensory pathways.
Resumo:
In this study we evaluate processing costs of different types of anaphoric expressions during reading. We consider three types of anaphoric expressions in Subject sentential position: a null pronoun (pro), and two gaps produced by syntactic movement: a WHvariable and a NP copy. Given that coreferential pro exhibits more referential weight than wh- and NP-gaps, and grounded on theories of referential processing based on relations of hierarchy and accessibility of the antecedent, we raise the hypothesis that the more dependent on its antecedent the anaphoric null constituent is, and the more minimal is the distance in terms of hierarchical structure between the anaphoric null element and its antecedent, the lower are the cognitive costs in processing. To test our hypothesis, we registered the eye movements with R6-HS ASL system of 20 Portuguese adult native speakers. Text regions including the selected anaphoric expressions were delimited and tagged. We analyzed the reading time of each region taking into account the number and duration of eye fixations per region; we used the reading time by character in milliseconds in order to compare values between regions of different length. We found a significant advantage in the reading time of the gaps arising from movement over the reading time of pro.
Resumo:
We construct a mapping from complex recursive linguistic data structures to spherical wave functions using Smolensky's filler/role bindings and tensor product representations. Syntactic language processing is then described by the transient evolution of these spherical patterns whose amplitudes are governed by nonlinear order parameter equations. Implications of the model in terms of brain wave dynamics are indicated.
Resumo:
The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64–66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease > maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease > maintain) and monotonic changes in EDA (increase > maintain > decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Resumo:
The rational for this review is to provide a coherent formulation of the cognitive neurochemistry of nicotine, with the aim of suggesting research and clinical applications. The first part is a comprehensive review of the empirical studies of the enhancing effects of nicotine on information processing, especially those on attentional and mnemonic processing. Then, these studies are put in the context of recent studies on the neurochemistry of nicotine and cholinergic drugs, in general. They suggest a positive effect of nicotine on processes acting on encoded material during the post acquisition phase, the process of consolidation. Thus, the involvement of nicotinic receptors in mnemonic processing is modulation of the excitability of neurons in the hippocampal formation to enable associative processing.
Resumo:
Williams syndrome (WS) is characterized by apparent relative strengths in language, facial processing and social cognition but by profound impairment in spatial cognition, planning and problem solving. Following recent research which suggests that individuals with WS may be less linguistically able than was once thought, in this paper we begin to investigate why and how they may give the impression of linguistic proficiency despite poor standardized test results. This case study of Brendan, a 12-year-old boy with WS, who presents with a considerable lack of linguistic ability, suggests that impressions of linguistic competence may to some extent be the result of conversational strategies which enable him to compensate for various cognitive and linguistic deficits with a considerable degree of success. These conversational strengths are not predicted by his standardized language test results, and provide compelling support for the use of approaches such as Conversation Analysis in the assessment of individuals with communication impairments.
Resumo:
Two experiments investigated effects of active processing of risk information on participants' understanding and judgments. It was hypothesized that more active processing would lead to better understanding and differences in affective judgments (e.g. increased satisfaction and reduced perceived risk to health). In both experiments participants were given a written scenario about their being prescribed a fictitious medication. This medication was said to cause side effects in 2% of people who took it. Before answering a series of written questions, participants in the active conditions of both experiments were asked to carry out a reflective task (portraying the size of risk on a bar chart in Experiment 1 and answering a reflective question in Experiment 2). The results showed that active participants rated the likelihood of experiencing possible side effects significantly lower than passive participants (Experiment 1), and that active participants were significantly more satisfied with the information and judged perceived risk to health from taking the medication significantly lower than passive participants (Experiment 2). In both experiments, active participants were significantly more correct in their probability and frequency estimates. The studies demonstrate that active processing of risk information leads to improved understanding of the information given. This has important implications for risk communication. In the context of health, better understanding should lead to improved decision-making and health outcomes. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
McDaniel, Robinson-Riegler, and Einstein (1998) recently reported findings in support of the proposal that prospective remembering is largely conceptually driven. In each of the three experiments they reported, however, the task in which the prospective memory target was encountered at test had a predominantly conceptual focus, thereby potentially facilitating retrieval of conceptually encoded features of the studied target event. We report two experiments in which we manipulated the dimension (perceptual or conceptual) along which a target event varied between study and test while using a processing task, at both study and test, compatible with the relevant dimension of target change. When the target was encountered in a sentence validity task at study and test, and the semantic context in which a target was encountered was changed between these two occasions, prospective remembering declined (Experiment 1). A similar decline occurred, using a readability rating task, when the perceptual context (font in which the word was printed) was altered (Experiment 2). These results indicate that both perceptual and conceptual processes can support prospective remembering.
Resumo:
Despite increasing empirical data to the contrary, it continues to be claimed that morphosyntax and face processing skills of people with Williams syndrome are intact, This purported intactness, which coexists with mental retardation, is used to bolster claims about innately specified, independently functioning modules, as if the atypically developing brain were simply a normal brain with parts intact and parts impaired. Yet this is highly unlikely, given the dynamics of brain development and the fact that in a genetic microdeletion syndrome the brain is developing differently from the moment of conception, throughout embryogenesis, and during postnatal brain growth. In this article, we challenge the intactness assumptions, using evidence from a wide variety of studies of toddlers, children, and adults with Williams syndrome.
Resumo:
Syntactic theory provides a rich array of representational assumptions about linguistic knowledge and processes. Such detailed and independently motivated constraints on grammatical knowledge ought to play a role in sentence comprehension. However most grammar-based explanations of processing difficulty in the literature have attempted to use grammatical representations and processes per se to explain processing difficulty. They did not take into account that the description of higher cognition in mind and brain encompasses two levels: on the one hand, at the macrolevel, symbolic computation is performed, and on the other hand, at the microlevel, computation is achieved through processes within a dynamical system. One critical question is therefore how linguistic theory and dynamical systems can be unified to provide an explanation for processing effects. Here, we present such a unification for a particular account to syntactic theory: namely a parser for Stabler's Minimalist Grammars, in the framework of Smolensky's Integrated Connectionist/Symbolic architectures. In simulations we demonstrate that the connectionist minimalist parser produces predictions which mirror global empirical findings from psycholinguistic research.
Resumo:
The goal of this research was to investigate the changes in neural processing in mild cognitive impairment. We measured phase synchrony, amplitudes, and event-related potentials in veridical and false memory to determine whether these differed in participants with mild cognitive impairment compared with typical, age-matched controls. Empirical mode decomposition phase locking analysis was used to assess synchrony, which is the first time this analysis technique has been applied in a complex cognitive task such as memory processing. The technique allowed assessment of changes in frontal and parietal cortex connectivity over time during a memory task, without a priori selection of frequency ranges, which has been shown previously to influence synchrony detection. Phase synchrony differed significantly in its timing and degree between participant groups in the theta and alpha frequency ranges. Timing differences suggested greater dependence on gist memory in the presence of mild cognitive impairment. The group with mild cognitive impairment had significantly more frontal theta phase locking than the controls in the absence of a significant behavioural difference in the task, providing new evidence for compensatory processing in the former group. Both groups showed greater frontal phase locking during false than true memory, suggesting increased searching when no actual memory trace was found. Significant inter-group differences in frontal alpha phase locking provided support for a role for lower and upper alpha oscillations in memory processing. Finally, fronto-parietal interaction was significantly reduced in the group with mild cognitive impairment, supporting the notion that mild cognitive impairment could represent an early stage in Alzheimer’s disease, which has been described as a ‘disconnection syndrome’.
Resumo:
Recent research indicates gender differences in the impact of stress on decision behavior, but little is known about the brain mechanisms involved in these gender-specific stress effects. The current study used functional magnetic resonance imaging (fMRI) to determine whether induced stress resulted in gender-specific patterns of brain activation during a decision task involving monetary reward. Specifically, we manipulated physiological stress levels using a cold pressor task, prior to a risky decision making task. Healthy men (n = 24, 12 stressed) and women (n = 23, 11 stressed) completed the decision task after either cold pressor stress or a control task during the period of cortisol response to the cold pressor. Gender differences in behavior were present in stressed participants but not controls, such that stress led to greater reward collection and faster decision speed in males but less reward collection and slower decision speed in females. A gender-by-stress interaction was observed for the dorsal striatum and anterior insula. With cold stress, activation in these regions was increased in males but decreased in females. The findings of this study indicate that the impact of stress on reward-related decision processing differs depending on gender.
Resumo:
We report results from two eye-movement experiments that examined how differences in working memory (WM) capacity affect readers' application of structural constraints on reflexive anaphor resolution during sentence comprehension. We examined whether binding Principle A, a syntactic constraint on the interpretation of reflexives, is reducible to a memory friendly “recency” strategy, and whether WM capacity influences the degree to which readers create anaphoric dependencies ruled out by binding theory. Our results indicate that low and high WM span readers applied Principle A early during processing. However, contrary to previous findings, low span readers also showed immediate intrusion effects of a linearly closer but structurally inaccessible competitor antecedent. We interpret these findings as indicating that although the relative prominence of potential antecedents in WM can affect online anaphor resolution, Principle A is not reducible to a processing or linear distance based “least effort” constraint.
Resumo:
Deficits in facial mimicry have been widely reported in autism. Some studies have suggested that these deficits are restricted to spontaneous mimicry and do not extend to volitional mimicry. We bridge these apparently inconsistent observations, by testing the impact of reward value on neural indices of mimicry, and how autistic traits modulate this impact. Neutral faces were conditioned with high and low reward. Subsequently, functional connectivity between the ventral striatum (VS) and inferior frontal gyrus (IFG) was measured whilst neurotypical adults (n = 30) watched happy expressions made by these conditioned faces. We found greater VS-IFG connectivity in response to high-reward vs. low-reward happy faces. This difference was negatively proportional to autistic traits, suggesting that reduced spontaneous mimicry of social stimuli seen in autism, maybe related to a failure in the modulation of the mirror system by the reward system rather than a circumscribed deficit in the mirror system.
Resumo:
We show that the affective experience of touch and the sight of touch can be modulated by cognition, and investigate in an fMRI study where top-down cognitive modulations of bottom-up somatosensory and visual processing of touch and its affective value occur in the human brain. The cognitive modulation was produced by word labels, 'Rich moisturizing cream' or 'Basic cream', while cream was being applied to the forearm, or was seen being applied to a forearm. The subjective pleasantness and richness were modulated by the word labels, as were the fMRI activations to touch in parietal cortex area 7, the insula and ventral striatum. The cognitive labels influenced the activations to the sight of touch and also the correlations with pleasantness in the pregenual cingulate/orbitofrontal cortex and ventral striatum. Further evidence of how the orbitofrontal cortex is involved in affective aspects of touch was that touch to the forearm [which has C fiber Touch (CT) afferents sensitive to light touch] compared with touch to the glabrous skin of the hand (which does not) revealed activation in the mid-orbitofrontal cortex. This is of interest as previous studies have suggested that the CT system is important in affiliative caress-like touch between individuals.